Основные виды модуляции. Что такое модуляция и разновидности модулированных сигналов? Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

Кроме простых видов цифровой модуляции существуют более сложные виды, предназначенные для максимизации эффективности по каким-либо параметрам. Большинство современных телекоммуникационных систем использует именно эффективные модуляции.

Основные два направления, по которым идет усовершенствование видов цифровой модуляции – это эффективность по мощности и спектральная эффективность.

Квадратурная модуляция. Описывая цифровую модуляцию, сигнальные векторы часто представляют через квадратурную и синфазную составляющую («Q » и «I » – рис. 2.10).

Это связано с тем, что модуляция и демодуляция сигналов в цифровой связи чаще всего осуществляются на квадратурных модуляторах и демодуляторах, поскольку их реализация значительно проще, чем непосредственное управление фазой и амплитудой сигнала, особенно когда требуется одновременная АМ и ФМ.

Простейший способ повышения спектральной эффективности состоит в увеличении длительности прямоугольной битовой посылки с сохранением прежней скорости передачи в числе бит на единицу времени. На этом принципе основана квадратурная фазовая манипуляция (quadrature phase shift keying – QPSK ).

На рис. 2.11, а представлен исходный поток данных d k (t ) = d 0 , d 1 , d 2 , …, состоящий из биполярных импульсов, т. е. d k принимают значения +1 или –1, представляющие двоичную единицу и двоичный нуль.

Этот поток импульсов разделяется на синфазный поток d I (t ) = d 0 , d 2 , d 4 , … и квадратурный d Q (t ) = d 1 , d 3 , d 5 , …, как показано на рис. 2.11, б . Скорости потоков d I (t ) и d Q (t ) равны половине скорости передачи потока d k (t ). Удобную ортогональную реализацию сигнала QPSK, S (t ), можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях от несущей:

С помощью тригонометрических тождеств это уравнение можно представить в следующем виде:

Модулятор QPSK, показанный на рис. 2.11, использует сумму синусоидального и косинусоидального слагаемых.

Поток импульсов d I (t ) используется для амплитудной модуляции (с амплитудой +1 или –1) косинусоиды. Это равноценно сдвигу фазы косинусоиды на 0 или π; следовательно, в результате получается сигнал BPSK. Аналогично, поток импульсов d Q (t ) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина θ(t ) будет соответствовать одному из четырех возможных сочетаний d I (t ) и d Q (t ): θ(t ) = 0, ±90, 180º; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 2.12. Так как cos(2πf 0 + π/4) и sin(2πf 0 + π/4) ортогональны, два сигнала BPSK можно обнаруживать раздельно.



Таким образом, QPSK в два раза экономнее BPSK в отношении использования частотного ресурса, поскольку имеет спектр той же формы, но суженный вдвое за счет двукратного растяжения посылки. И этот выигрыш достигнут без ухудшения помехоустойчивости приема (евклидово расстояние между соседними векторами останется прежним, так как при неизменной мощности энергия посылки удвоится за счет удвоения ее длительности).

Однако базовый вариант квадратурной манипуляции оказывается не совсем благоприятным с точки зрения энергопотребления. Поскольку при передаче возможны скачки фазы на 180º, требования к линейному диапазону усилителя оказываются чрезмерными. Чтобы использовать максимально благоприятный с точки зрения энергопотребления усилителя передатчика режим класса C, необходимо иметь несущую с постоянной огибающей.

Существуют разновидности квадратурной манипуляции, призванные уменьшить скачки фазы. В случае использования квадратурной манипуляции со сдвигом (OQPSK – Offset QPSK ), потоки d I (t ) и d Q (t ) передаются со сдвигом на T , как показано на рис. 2.13.

Поэтому одновременное изменение знака в обоих потоках становится невозможным, а значит, исключаются скачки фазы на 180º, и фаза может измениться только на 90º.

Другой вариант приближения к модуляции с постоянной огибающей получил название π/4-QPSK. Здесь, вместо сдвига посылок введен поворот на угол π/4 алфавита значений фаз при переходе от четных посылок к нечетным. Благодаря такому смещению, при i = 2k φ i принимает значения из множества 0, π, ±π/2, а при i = 2k + 1 – из множества ±π/4, ±3π/4 (рис. 2.14).

Такой вид модуляции позволяет избежать большого усложнения демодулятора, хотя не столь эффективен в смягчении требования к динамическому диапазону, как OQPSK.

QAM. Квадратурную амплитудную модуляцию (QAM – Quadrature Amplitude Mdulation ) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых несущих (амплитудно-модулированных). Передачу сигналов, модулированных QAM, можно также рассматривать как комбинацию амплитудной и фазовой манипуляций (ASK и PSK). За счет неодинаковой длины сигнальных векторов достигается оптимизация их созвездия, максимизирующая минимальное расстояние между сигнальными векторами. Подобные форматы модуляции с самым различным числом сигнальных векторов и их конфигурации в созвездии (рис. 2.15) широко используются во многих телекоммуникационных системах.

MSK. Можно дополнительно усилить формат QPSK, устранив разрывные переходы фазы. Одной из схем, реализующей модуляцию без разрыва фазы, является манипуляция с минимальным сдвигом (minimum shift keying – MSK ). Ее можно рассматривать как частный случай частотной манипуляции без разрыва фазы (CPFSK) или как частный случай QPSK с синусоидальным взвешиванием символов. В первом случае сигнал MSK можно представить следующим образом:

Здесь f 0 несущая частота, d k = ±1 представляет биполярные данные, а d k – фазовая постоянная для k -го интервала передачи двоичных данных. При d k = 1 передаваемая частота – это f 0 + 1/4T , а при d k = –1 – это f 0 – 1/4T . Следовательно, разнесение тонов в MSK составляет половину от используемого при ортогональной FSK, откуда и название – манипуляция с минимальным сдвигом.

Рассматриваемый вид модуляции сводится, по существу, к бинарной частотной манипуляции. При этом переключение частоты происходит без скачков фазы, передача очередного символа начинается с той фазы, которая «набежала» в течении передачи предыдущего символа. Этот принцип можно иллюстрировать деревом траекторий фазы (рис. 2.16, а ). В течение каждого отрезка времени фаза линейно растет или убывает в соответствии с текущим приращением частоты, и любая из возможных траекторий фазы оказывается непрерывной функцией (рис. 2.16, б ). Такая модуляция обеспечивает постоянную огибающую и, как результат, оптимальность режима усилителя мощности передатчика.

В квадратурном представлении сигнал можно записать так:

Таким образом, посылкой становится импульс с огибающей в виде полуволны косинуса. За счет его сглаженной формы происходит существенное сужение спектра по сравнению с QPSK.

GMSK. При передаче по радиоканалу часто бывает желательна более узкая полоса спектра сигнала, чем при MSK, где имеются достаточно большие по величине боковые лепестки, выходящие за границу 1/T b . Чтобы добиться дальнейшего сужения спектра, перед модуляцией осуществляют низкочастотную фильтрацию. Если используется фильтр с гауссовской формой АЧХ, то такой вариант модуляции называют GMSK (Gaussian MSK ). Для характеристики полосы пропускания низкочастотного фильтра вводится величина:

где f –3 дБ – частота среза по уровню –3 дБ; R – скорость передачи битов. На рис. 3.17, а приведены импульсные характеристики гауссовского фильтра при BT = 0.3 и BT = 0.5. На рис. 2.17, б можно видеть выигрыш в частотной полосе при использовании GMSK с этими значениями относительно MSK.

Рис. 2.17

Однако, как можно видеть из рис. 2.17, а , при увеличении значения BT длина символа растягивается, что чревато повышенной межсимвольной интерференцией. То есть выигрыш в компактности спектра достигается за счет снижения достоверности передачи информации. В стандарте GSM за оптимальное значение принято BT = 0.3.

Модуляцию GMSK можно рассматривать как дальнейшее усовершенствование принципа достижения непрерывности фазы. При этом устраняются не только разрывы самой фазы, но и ее производных. На рис. 2.18 показано дерево траекторий фазы при модуляции GMSK, иллюстрирующее этот принцип.

Как показывает приведенный обзор, применяемые методы цифровой модуляции отличаются заметным разнообразием. Поэтому при проектировании телекоммуникационных систем существует много путей достижения оптимальных показателей. В заключение можно привести краткое сравнение некоторых видов цифровой модуляции между собой.

На рис. 2.19 представлен график, где по оси ординат отложена удельная спектральная эффективность (бит/с/Гц), а по оси абсцисс – энергетическая эффективность (отношение энергии, приходящейся на бит сообщения к спектральной плотности шума, необходимое для достижения вероятности ошибки 10 –5).

Различные виды модуляции отмечены на этом графике точкой, характеризующей соотношение между спектральной и энергетической эффективностями этого вида. Из графика хорошо виден компромиссный характер выбора вида цифровой модуляции относительно этих двух параметров.

В табл. 2.1 приведены примеры использования некоторых видов цифровой модуляции в коммерческих телекоммуникационных системах различного назначения.

Таблица 2.1

Выбор вида модуляции зависит от особенностей применения, развертывания систем, необходимой скорости передачи, требуемой достоверности передачи.

Цифровая модуляция

Цифровая модуляция — процесс преобразования цифровых символов в сигн а лы, совместимые с характеристиками канала связи. Каждому возможному значению передаваемого символа ставятся в соответствие некоторые параме т ры аналогового несущего колебания.

Манипуляция - способ цифровой или импульсной модуляции, когда пар а ме т ры несущего колебания меняются скачкообразно.

При цифровой модуляции используют чаще всего дискретные последов а тельности двоичных символов — двоичных кодов. Закодированный первичный аналоговый сигнал e(t), представляющий собой последовательность кодовых символов {е n } = е n (k ) (n = О, 1, 2, 3, ... — порядковый номер символа; — номер позиции кода; m — основание кода, т. е. число различных его элеме н тов, которые преобразуются в последовательность элементов (посылок) сигнала { U n (t)} путем воздействия кодовых символов на высокочастотное несущее к о лебание U Н (t). Как правило, используют двоичные коды т.е. m =2. Обычно п о средством модуляции частота или фаза несущего в радиоимпульсе изменяется по закону, определяемому цифр о вым кодом.

Наиболее известны следующие виды цифровой модуляции:

  1. Невозвращающийся в нуль код - NRZ (Non Return to Zero). Является простейшим линейным кодом, широко применяемым на практике. Сущ е ствуют две разновидности этого кода — униполярный и биполярный NRZ-коды. В униполярном NRZ-коде логической единице соответствует прямоугольный импульс положительной полярности, а логическому нулю — нулевое напряж е ние (пауза). В биполярном NRZ-коде логической единице соответствует пр я моугольный импульс положительной полярности, а логическому нулю — пр я моугольный импульс отрицательной полярности. Положительное или отриц а тельное напряжение на выходе кодера сохраняется неизменным в течение дл и тельности символа, что и определяет термин «нево з вращающийся в нуль» код. Длительность импульсов и пауз в NRZ-кодах равна длительности одного си м вола (бита) информации (рис. 1, а, б).
  2. Амплитудная манипуляция (АМн; иначе ИКМ-АМ , или цифровая а м плитудная модуляция — ЦАМ; amplitude shift keying — ASK). Битовому си м волу «1» при ИКМ-АМ (рис. 2, в) соответствует передача несущего колеб а ния в течение времени τ И (длительность посылки), символу «0» — отсутствие кол е бания (пауза) на таком же временном интервале.
  3. Частотная манипуляция (ЧМн; иначе ИКМ-ЧМ , или цифровая часто т ная модуляция — ЦЧМ; frequency shift keying — FSK). При ИКМ-ЧМ (рис. 1, г) передача несущего с частотой f 0 соответствует символу «1», а передача колеб а ния с частотой f 1 — символу «0».
  4. Фазовая манипуляция (ФМн; иначе ИКМ-ФМ , или цифровая фаз о вая модуляция — ЦФМ; phase shift keying — PSK ). При двоичной ИКМ-ФМ (рис. 1, д) фаза несущей меняется на 180° при каждом переходе символов от «1» к «0» и от «0» к «1». Долгое время не находила практического применения из-за сложности восстановления в приемнике опорного («несущего») колебания, строго синфазного с несущей частотой принимаемого сигнала.
  5. Относительная фазовая (дифференциальная; фазоразностная) манип у ляция (ОФМ ; differential phase shift keying — DPSK ), часто называемой мног о позиционной амплитудно-фазовой манипуляцией (рис. 1, е). На практике ци ф ровую фазовую манипуляцию применяют при небольшом числе возможных значений начальной фазы — как правило, 2, 4 или 8. Так как на практ и ке при приеме сигнала сложно определить абсолютное значение начальной ф а зы, то проще определять относительный фазовый сдвиг между двумя соседними си м волами. Поэтому обычно используется ОФМ при которой в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте, при этом фазу канального сигнала отсчит ы вают не от некоторого эталона, а от фазы предыдущего элемента. На рис 1. видно, что изменение фазы несущего сигнала на 180 0 происходит при каждом «приходе» логической «1» - символ «О» передается отрезком синусоиды с начальной фазой предшествующего элемента сигнала, а символ «1» — таким же отрезком с начальной фазой, отличающейся от начальной фазы предш е ствующего элемента на 180°. При ОФМ передача сообщения начинается с п о сылки одного не несущего передаваемой информации элемента, который сл у жит лишь опорным (эталонным) сигналом для сравнения фазы последующ е го элемента. Каждому информационному биту ставится в соответствие не абс о лютное значение фазы, а ее изменение относительно предыдущего знач е ния.
  6. В цифровом телевидении для передачи по спутниковым трактам и в наземном телевещании при тяжелых условиях приема используется двукратная, или четырехфазная ОФМ (ОФМ-4 ; другое название — квадратурная относ и тельная фазовая модуляция — КОФМ ; англ. — Quadrature phase shift keying — QPSK). Модуляция ОФМ-4 (QPSK) обеспечивает необходимый компромисс между скоростью передачи информации и помехоустойчивостью системы и применяется как самостоятельно, так и в комбинациях с другими методами. Этот вид модуляции основан на передаче четырех сигналов, каждый из кот о рых несет информацию о двух битах (дибите) исходной двоичной последов а тельности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01,10 или 11) фаза сигнала может изменит ь ся на О, 90, 180, 270 или 45, 135, 225, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко сниж а ется помехоустойчивость ОФМ. Потому для высокоскоростной передачи данных ОФМ использовать не рек о мендуется.

Рис. 1. Формы сигналов при различных видах цифровой модуляции двои ч ным кодом: а — униполярный код; б — биполярный код; в — ИКМ-АМ;

г — ИКМ-ЧМ; д — ИКМ-ФМ; е — ОФМ

Многопозиционные сигналы. Эффективность систем передачи цифровых с о общений можно существенно повысить путем использования многопозицио н ных (многоуровневых) сигналов, которые можно применять при большой мо щ ности сигнала без риска увеличить вероятность ошибки при определении зн а чения принимаемого сигнала. Увеличение числа позиций, или уровней, позв о ляет увеличить удельную скорость модуляции, но лишь за счет увеличения мощности излучаемого колебания. То же самое можно сказать и о выборе ко р ректирующих кодов. Выбор сигналов и кодов в этих случаях является опред е ляющим для построения высокоэффективных кодемов (согласованных между собой кодеков и модемов).

Рис.2. Формирование четырехпозиционного сигнала:

а — передаваемый первичный сигнал; б — четырехпозиционный сигнал

Формирование четырехпозиционного сигнала показано на рис. 2. Пары с о седних значений двоичных данных (длительность каждого символа τ и ) перед а ваемого первичного сигнала u 1 (t) (рис. 2, а) определяют один из четырех уро в ней, который занимает сигнал u 2 (t ) (рис. 2, б). Пара двоичных символов 00 с о ответствует уровню (амплитуде) 0 , пара 01 — уровню 1 , пара 10 — уро в ню

2 и пара 11 — уровню 3 . Сигнал u 2 (t ) меняется в 2 раза реже, чем исходный u 1 (t), для его передачи требуется в 2 раза меньшая полоса частот, следовател ь но, использование четырехпозиционного сигнала позволяет увеличить удел ь ную скорость передачи в 2 раза. Но надо помнить, что применение многопоз и цио н ных сигналов связано со значительным увеличением их мощности.

Общие сведения о модуляции

Модуляция это процесс преобразования одного или нескольких информационных параметров несущего сигнала в соответствии с мгновенными значениями информационного сигнала.

В результате модуляции сигналы переносятся в область более высоких частот.

Использование модуляции позволяет:

  • согласовать параметры сигнала с параметрами линии;
  • повысить помехоустойчивость сигналов;
  • увеличить дальность передачи сигналов;
  • организовать многоканальные системы передачи (МСП с ЧРК).

Модуляция осуществляется в устройствах модуляторах . Условное графическое обозначение модулятора имеет вид:

Рисунок 1 - Условное графическое обозначение модулятора

При модуляции на вход модулятора подаются сигналы:

u(t) — модулирующий , данный сигнал является информационным и низкочастотным (его частоту обозначают W или F);

S(t) — модулируемый (несущий) , данный сигнал является неинформационным и высокочастотным (его частота обозначается w 0 или f 0);

Sм(t) — модулированный сигнал , данный сигнал является информационным и высокочастотным.

В качестве несущего сигнала может использоваться:

  • гармоническое колебание, при этом модуляция называется аналоговой или непрерывной ;
  • периодическая последовательность импульсов, при этом модуляция называется импульсной ;
  • постоянный ток, при этом модуляция называется шумоподобной .

Так как в процессе модуляции изменяются информационные параметры несущего колебания, то название вида модуляции зависит от изменяемого параметра этого колебания.

1. Виды аналоговой модуляции:

  • амплитудная модуляция (АМ), происходит изменение амплитуды несущего колебания;
  • частотная модуляция (ЧМ), происходит изменение частоты несущего колебания;
  • фазовая модуляция (ФМ), происходит изменение фазы несущего колебания.

2. Виды импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ) , происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ) , происходит изменение частоты следования импульсов несущего сигнала;
  • Фазо-импульсная модуляция (ФИМ) , происходит изменение фазы импульсов несущего сигнала;
  • Широтно-импульсная модуляция (ШИМ) , происходит изменение длительности импульсов несущего сигнала.

Амплитудная модуляция

Амплитудная модуляция — процесс изменения амплитуды несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

амплитудно-модулированного (АМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t )= Um u sin ? t (1)

на несущее колебание

S (t )= Um sin (? 0 t + ? ) (2)

происходит изменение амплитуды несущего сигнала по закону:

Uам(t)=Um+ а ам Um u sin ? t (3)

где а ам — коэффициент пропорциональности амплитудной модуляции.

Подставив (3) в математическую модель (2) получим:

Sам(t)=(Um+ а ам Um u sin ? t) sin(? 0 t+ ? ). (4)

Вынесем Um за скобки:

Sам(t)=Um(1+ а ам Um u /Um sin ? t) sin (? 0 t+ ? ) (5)

Отношение а ам Um u /Um = m ам называется коэффициентом амплитудной модуляции . Данный коэффициент не должен превышать единицу, т. к. в этом случае появляются искажения огибающей модулированного сигнала называемые перемодуляцией . С учетом m ам математическая модель АМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

Sам(t)=Um(1+m ам sin ? t) sin(? 0 t+ ? ). (6)

Если модулирующий сигнал u(t) является негармоническим, то математическая модель АМ сигнала в этом случае будет иметь вид:

Sам(t)=(Um+ а ам u(t)) sin (? 0 t+ ? ) . (7)

Рассмотрим спектр АМ сигнала для гармонического модулирующего сигнала. Для этого раскроем скобки математической модели модулированного сигнала, т. е. представим его в виде суммы гармонических составляющих.

Sам(t)=Um(1+m ам sin ? t) sin (? 0 t+ ? ) = Um sin (? 0 t+ ? ) +

+m ам Um/2 sin((? 0 ? ) t+ j ) m ам Um/2 sin((? 0 + ? )t+ j ). (8)

Как видно из выражения в спектре АМ сигнала присутствует три составляющих: составляющая несущего сигнала и две составляющих на комбинационных частотах. Причем составляющая на частоте ? 0 —? называется нижней боковой составляющей , а на частоте ? 0 + ? верхней боковой составляющей. Спектральные и временные диаграммы модулирующего, несущего и амплитудно-модулированного сигналов имеют вид (рисунок 2).

Рисунок 2 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и ампдтудно-модулированного (в) сигналов

D? ам =(? 0 + ? ) (? 0 ? )=2 ? (9)

Если же модулирующий сигнал является случайным, то в этом случае в спектре составляющие модулирующего сигнала обозначают символически треугольниками (рисунок 3).

Составляющие в диапазоне частот (? 0 — ? max) ? (? 0 — ? min) образуют нижнюю боковую полосу (НБП), а составляющие в диапазоне частот (? 0 + ? min) ? (? 0 + ? max) образуют верхнюю боковую полосу (ВБП)

Рисунок 3 - Временные и спектральные диаграммы сигналов при случайном модулирующем сигнале

Ширина спектра для данного сигнала будет определятся

D ? ам =(? 0 + ? max ) (? 0 ? min )=2 ? max (10)

На рисунке 4 приведены временные и спектральные диаграммы АМ сигналов при различных индексах m ам. Как видно при m ам =0 модуляция отсутствует, сигнал представляет собой немодулированную несущую, соответственно и спектр этого сигнала имеет только составляющую несущего сигнала (рисунок 4,

Рисунок 4 - Временные и спектральные диаграммы АМ сигналов при различных mам: а) при mам=0, б) при mам=0,5, в) при mам=1, г) при mам>1

а), при индексе модуляции m ам =1 происходит глубокая модуляция, в спектре АМ сигнала амплитуды боковых составляющих равны половине амплитуды составляющей несущего сигнала (рисунок 4в), данный вариант является оптимальным, т. к. энергия в большей степени приходится на информационные составляющие. На практике добиться коэффициента равного едините тяжело, поэтому добиваются соотношения 01 происходит перемодуляция, что, как отмечалось выше, приводит к искажению огибающей АМ сигнала, в спектре такого сигнала амплитуды боковых составляющих превышают половину амплитуды составляющей несущего сигнала (рисунок 4г).

Основными достоинствами амплитудной модуляции являются:

  • узкая ширина спектра АМ сигнала;
  • простота получения модулированных сигналов.

Недостатками этой модуляции являются:

  • низкая помехоустойчивость (т. к. при воздействии помехи на сигнал искажается его форма — огибающая, которая и содержит передаваемое сообщение);
  • неэффективное использование мощности передатчика (т. к. наибольшая часть энергии модулированного сигнала содержится в составляющей несущего сигнала до 64%, а на информационные боковые полосы приходится по 18%).

Амплитудная модуляция нашла широкое применение:

  • в системах телевизионного вещания (для передачи телевизионных сигналов);
  • в системах звукового радиовещания и радиосвязи на длинных и средних волнах;
  • в системе трехпрограммного проводного вещания.

Балансная и однополосная модуляция

Как отмечалось выше, одним из недостатков амплитудной модуляции является наличие составляющей несущего сигнала в спектре модулированного сигнала. Для устранения этого недостатка применяют балансную модуляцию. При балансной модуляции происходит формирование модулированного сигнала без составляющей несущего сигнала. В основном это осуществляется путем использования специальных модуляторов: балансного или кольцевого. Временная диаграмма и спектр балансно-модулированного (БМ) сигнала представлен на рисунке 5.

Рисунок 5 - Временные и спектральные диаграммы модулирующего (а), несущего (б) и балансно-модулированного (в) сигналов

Также особенностью модулированного сигнала является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала и, соответственно, увеличить число каналов в линии связи. Модуляция при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной. Формирование однополосно-модулированного (ОМ) сигнала осуществляется из БМ сигнала специальными методами, которые рассматриваются ниже. Спектры ОМ сигнала представлены на рисунке 6.

Рисунок 6 - Спектральные диаграммы однополосно-модулированных сигналов: а) с верхней боковой полосой (ВБП), б) с нижней боковой полосой (НБП)

Частотная модуляция

Частотная модуляция — процесс изменения частоты несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель частотно-модулированного (ЧМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение частоты несущего сигнала по закону:

w чм (t) = ? 0 + а чм Um u sin ? t (9)

где а чм — коэффициент пропорциональности частотной модуляции.

Поскольку значение sin ? t может изменятся в диапазоне от -1 до 1, то наибольшее отклонение частоты ЧМ сигнала от частоты несущего сигнала составляет

? ? m = а чм Um u (10)

Величина Dw m называется девиацией частоты. Следовательно, девиация частоты показывает наибольшее отклонение частоты модулированного сигнала от частоты несущего сигнала.

Значение ? чм (t) непосредственно подставить в S(t) нельзя, т. к. аргумент синуса ? t+j является мгновенной фазой сигнала?(t) которая связана с частотой выражением

? = d ? (t )/ dt (11)

Отсюда следует что, чтобы определить? чм (t) необходимо проинтегрировать ? чм (t)

Причем в выражении (12) ? является начальной фазой несущего сигнала.

Отношение

Мчм = ?? m / ? (13)

называется индексом частотной модуляции .

Учитывая (12) и (13) математическая модель ЧМ сигнала при гармоническом модулирующем сигнале будет иметь вид:

S чм (t)=Um sin(? 0 t Мчм cos ? t+ ? ) (14)

Временные диаграммы, поясняющие процесс формирования частотно-модулированного сигнала приведены на рисунке 7. На первых диаграммах а) и б) представлены соответственно несущий и модулирующий сигналы, на рисунке в) представлена диаграмма показывающая закон изменения частоты ЧМ сигнала. На диаграмме г) представлен частогтно-модулированный сигнал соответствующий заданному модулирующему сигналу, как видно из диаграммы любое изменение амплитуды модулирующего сигнала вызывает пропорциональное изменение частоты несущего сигнала.

Рисунок 7 - Формирование ЧМ сигнала

Для построения спектра ЧМ сигнала необходимо разложить его математическую модель на гармонические составляющие. В результате разложения получим

S чм (t)= Um J 0 (M чм ) sin(? 0 t+ ? )

Um J 1 (M чм ) {cos[(? 0 ? )t+ j ]+ cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

Способы модуляции

Для согласования спектра цифровых сигналов с полосой пропускания каналов применяются разнообразные виды модуляции. Различают следующие виды модуляции: аналоговая модуляция, аналого-цифровая и цифро-аналоговая.

Модуляцией называется процесс преобразования информационного модулирующего сигнала в форму, пригодного для передачи по соответствующему каналу с изменением параметров другого несущего сигнал. Параметрами несущего сигнала являются его амплитуда, частота, фаза.

Аналоговая модуляция используется для преобразования одного аналогового информационного сигнала в другой аналоговый несущий сигнал. Какой из параметров изменяется, получают следующие виды аналоговой модуляции.

Амплитудная модуляция АМ (amplitude modulation) – информационный сигнал кодируется в виде изменения амплитуды несущего сигнал. Этот тип модуляции используется в системе радиовещания.

Частотная модуляция FM (frequency modulation) – информационный сигнал кодируется в виде частоты несущего сигнала. Этот тип модуляции используется в системах телевещания и спутниковых системах связи.

Фазовая модуляция PM (phase modulation) – информационный сигнал кодирует в виде изменения фазы (временного сдвига) несущего сигнал. Этот тип модуляции применяется в тех же системах, что и FM. Если изменяется несколько параметров, можно получить соответственно амплитудно - фазовой или частотно - фазовой модуляцией.

Цифро - аналоговая модуляция используется для преобразования цифровых сигналов в аналоговую форму (например, в модемах).

Для цифровых сигналов модулирующая функция принимает дискретные значения (0,1) или (1, -1), что приводит к скачкообразным изменениям параметров несущего сигнала. Такая модуляция называется манипуляцией.

Различают следующие виды цифро-аналоговой модуляции:

Цифро-аналоговая модуляция со сдвигом амплитуд ASK (Amplitude Shift Keying) – информационный сигнал кодирует изменения амплитуды несущего сигнала.

Кодирование со сдвигом частот FSK (Frequency Shift Keying) – информационный сигнал кодирует изменение частоты (временного сдвига) несущего сигнал. В зависимости от количества используемых интервалов сдвига этот метод позволяет представить одним модулированным сигналом несколько информационных бит.

Кодирование со сдвигом фазы PSK (Phase Shift Keying) – информационный сигнал кодируется изменением фазы (сдвига) несущего сигнала. Различают абсолютную и относительную фазовую модуляцию.

При абсолютной двухпозиционной фазовой модуляции BPSK (Binary Phase Shift Keying), фаза модулированного колебания при входном сигнале двоичного «0» совпадает со значением фазы опорного (несущего) сигнала, при сигнале двоичной «1» - изменяется на противоположную.

В случае дифференциально-фазовой модуляции (DPSK) фаза текущего колебания изменяется не по отношению к опорному колебанию, а то отношение к фазе предыдущей посылки.

Для увеличения скорости информационного потока широко применяется многопозиционная фазовая модуляция с 4, 8 и 16 значениями сдвига фаз. При 4-позиционной модуляции последовательность бит объединяются по два разряда (в дибиты) используют разности фаз соседних посылок 0º, 90º, 180º, 270º .

При 8-позиционной модуляции поток делят по 3 бита (трибиты), а при 16-позиционной по четыре бита (квадрабиты). Фазовые углы между векторами в первом случае отличаются уже на 45º, во втором – на 22,5º.

Фазовые диаграммы частот называют сигнальным созвездием. Для получения модулированных колебаний с числом сдвига фаз сигнала больше двух используются два сигнала сдвинутых на 90 0 , т.е. находящиеся в квадратуре. В этом случае говорят о квадратурной фазовой модуляции QPSK (Quadrature Phase Shift Keying).

Информационная скорость при многопозиционной передаче увеличивается в log m раз, т. е. если m = 4 (четырехпозиционная манипуляция) скорость передачи в 2 раза выше, при m =16 (16-позиционная манипуляция) скорость увеличивается в четыре раза.

Квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation) – информационный сигнал кодирует изменение амплитуды и фазы несущего сигнала.

Одновременно используется два гармонические колебания, сдвинутые по фазе на 90 0 .

В передатчике одна из составляющих синфазна несущей частоты, вторая находится в квадратуре по отношении к колебанию. Иными словами есть косинусная и синусная (квадратурная) несущие. При такой модуляции состояния несущего сигнала можно описать различными амплитудами и фазами.

На рис.1.13 показана четырехуровневая модуляция несущей.

Рисунок 1.13

На плоскости процесс кодирования можно представить, отложив в декартовой системе по оси ординат амплитуды синфазного колебания, а по оси абсцисс - амплитуды квадратурной составляющей. В результате получится, что каждому варианту моделирующих амплитуд, соответствует определенная точка на сигнальной плоскости. Если теперь цифровой информационный поток разбить на блоки фиксированной длины и присвоить каждому значению битовой последовательности определенную амплитуду этих составляющих с учетом знака, получим однозначное соответствие между сигнальными точками на плоскости и входной битовой последовательностью. Графически это изображается в виде так называемого сигнального созвездия. Соответствие между группами бит и точками созвездия выбирается таким образом, что бы соседние точки отличались минимальным количеством бит, причем именно старшими разрядами. Метод кодирования QAM8 характеризует восьмью возможными битовыми комбинациями.

На рис.1.14 показано зеркальное созвездие, а таблица 1.9 определяет состояния при таком кодировании.

Рисунок 1.14

Таблица 1.9

На рис.1.15 показано зеркальное созвездие при кодировании QAM – 16

Решетчатая модуляции TCM (Trellis Coded Modulation) – аналогична QAM, однако в передаваемый сигнал включается дополнительный бит для коррекции ошибок.

Рисунок 1.15

Амплитудно-фазовая модуляция с подавлением несущей и передачей одной боковой полосы CAP (Carrier less Amplitude and Phase Modulation)основана на том, что передача двух боковых полос модулированного сигнала в информационном смысле является избыточной. Осуществляя передачу информации с использованием одной боковой полосы, можно более эффективно использовать мощность сигнала и полосу канала связи. При формировании САР-сигналов на передающей стороне перед суммированием в модуляторе синфазная и квадратурная составляющая подвергается дополнительной фильтрации. Демодулирование САР-сигналов на приемной стороне осуществляется, выполняя предварительное восстановление несущей. Это адаптивная форма кода QAM. Этот метод позволяет корректировать значения символов, учитывая состояние линии (например, шум) в начале соединения.



Способ многочастотной передачи DMT (Discrete multi-tone modulation) использует одновременную передачу QAM-сигналов в различных частотных полосах. Весь частотный диапазон делится на несколько участков фиксированной ширины. Каждый из этих участков используется для организации независимого канала передачи данных. Передатчик, учитывая уровень помех в каждом из участков, выбирает схему модуляции. Если участок имеет малый уровень шумов, применяется алгоритм с большим числом позиций, например, QAM-64. На более зашумленных участках применяются более простые алгоритмы, например, QPSK. При передаче данных информация распределяется между каналами пропорционально их пропускной способности.

Метод DMT оговорен в стандарте Т1.413, разработанном Американским Национальным институтом стандартизации ANSI (American National Standards Institute), в соответствии с чем в канале заданы 256 подканалов, полоса пропускания каждого подканала равна 4,3125 кГц. Каждый подканал независимо модулируется с помощью метода дискретной мо­дуляции QAM. Сигнал передается с помощью постоянного тока при ширине полосы пропускания 1,104 МГц; теоретическая пропускная способность для данных с полосой пропускания 1,104 МГц равна 16,384 Мбит/с. Метод DMT был принят комитетом ANSI как стандарт кодирования для линий связи T1 и используется в системах передачи сигналов по каналам ADSL.

Мультиплексирование с разделением по ортогональным частотам OFDM (Orthogonal Frequency Division Multiplexing) – частный случай способа передачи DMT. Суть способа OFDM заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно по всем этим подканалам. Высокая скорость передачи достигается за счет такой одновременной передачи. Для экономии использования всей полосы канала, разделенного на подканалы, желательно как можно более плотно расположить подканалы. В сетях диапазон частот 5,2 ГГц разбит на 12 неперекрывающихся каналов с шириной полосы 20 МГц. Каждый из каналов разбит на 64 подканала с полосой 912,5 кГц. Для передачи данных используются 48 подканалов. Четыре служат для передачи опорных колебаний, а по 6 подканалов справа и слева выполняют функции защитных полос. В любом из каналов можно выполнить передачу со скоростью 6, 9, 12, 18, 24, 36, 48 или 54 Мбит/с. Это определяется выбранным способом фазовой или амплитудно-фазовой модуляции при BPSK – 6 Мбит/с, при QPSK – 12 Мбит/с, при QAM – 16 – 24 Мбит/с, при QA_-64 – 54Мбит/с.

Аналогово-цифровая модуляция используется для преобразования аналоговых сигналов в цифровую форму, пригодную для передачи по цифровых каналах связи (DS – цифровой сервис).

Различают следующие виды такой модуляции:

1. Дельта – модуляция DM (delta modulation) – аналоговый сигнал представляется последовательностью битов, значения которых определяются изменением уровня аналогового сигнала по сравнению с предыдущим значением.

Обладает большим числом преимуществ, отмеченных в статье "Виды сигналов, применяемых в телекоммуникации". Однако при передаче на дальние расстояния (более 100 метров) он начинает терять одно из своих самых важных свойств: помехозащищенность. Это связано с тем, что в качестве среды, как правило, используется воздушное пространство в случае радиопередачи и проводные каналы связи, а в этих средах очень быстро затухает. Использовать ретрансляторы через каждые несколько сотен метров при передаче на дальние расстояния экономически неэффективно. Кроме того, это не всегда технически реализуемо, в частности в сотовых системах связи максимальная удаленность мобильной станции () от базовой станции () может достигать 35 км. Также есть еще одно важное свойство, требуемое для цифрового канала связи – широкополосность. Цифровой с резкими переходами между уровнями требует широкой полосы для его передачи. В противном случае переходы между уровнями будут "заламываться" и будет "смазанным", что может привести к высокому проценту ошибок. Для решения вышеуказанных проблем используют различные методы модуляции сигналов, о которых и пойдет речь в данной статье.

Модуляция – это процесс изменения каких-либо параметров несущего сигнала под действием информационного потока. Данный термин обычно применяют для сигналов. Применительно к цифровым сигналам существует другой термин "манипуляция", однако его часто заменяют все тем же словом "модуляция" подразумевая, что речь идет о сигналах.

Существует 3 основных вида манипуляции сигналов: (Amplitude-shift keying (ASK)), (Frequency-shift keying (FSK)) и (Phase-shift keying (PSK)). Этот набор манипуляций определяется основными характеристиками, которыми обладает любой (см. статью "Сигнал и его основные характеристики").

И являются базисом и достаточно редко применяются на практике поодиночке. Чаще применяются их модификации или в сочетании друг с другом. В частности в стандарте (Global System for Mobile Communications) на радио интерфейсе применяется модуляция GMSK (Gaussian modulation with Minimum Shift Keying) – гауссовская манипуляция с минимальным фазовым сдвигом. Главное ее преимущество заключается в том, что манипулированный этим методом занимает гораздо меньшую частотную полосу, чем при обычной фазовой манипуляции. Однако в основу GMSK положена, рассмотренная выше обычная манипуляция, и это видно даже из названия.

Таким образом, выбор того или иного метода манипуляции обусловлен требованиями по помехозащищенности, пропускной способности канала связи, стоимостью реализации оборудования и т.п.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: