Технические секреты: как устроены внутри современные холодильники? Принцип работы холодильника с одним и двумя компрессорами, разным количеством камер и режимами.

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:

  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:

  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.

Устройство и принцип работы холодильной установки


Нажать Класс

Рассказать ВК


Уважаемые посетители сайта!!!

Данные записи по холодильникам представлены для Вас из собственного законспектированного материала на основе прочитанной технической литературы отечественных авторов, а так же из личной практики по ремонту домашних холодильников.

Получение холода — в холодильниках

Любое тело, имеющее более высокую температуру по сравнению с окружающей средой, — способно охлаждаться естественным путем. То есть тепло от более нагретого тела — передается окружающей среде, температура самого тела при этом будет понижаться.

Чтобы охладить тело до температуры ниже окружающей среды — потребуется способ искусственного охлаждения с затратой определенного количества энергии.

Для данного способа искусственного охлаждения существуют специальные машины, отбирающие тепло от охлаждаемого объекта и передающие его в более теплую среду. Принцип передачи тепла таким способом называется искусственным способом получения холода, по которому и работают все холодильники.

Охлаждение в холодильных камерах происходит в следствии кипения хладагента, циркулирующего принудительно, в замкнутой системе холодильника. Таким хладагентом или как его еще называют холодильным агентом , — является обычно фреон.

Холодильные машины \холодильники\ различают двух типов:

  • абсорбционные;
  • компрессионные.

Более широкое применение получили как мы знаем — компрессионные типы холодильников, где циркуляция хладагента происходит принудительно, за счет работы мотор — компрессора.

холодильник Атлант

По фотоснимку холодильника Атлант, данный холодильник можно охарактеризовать следующим образом:

Компрессионный холодильник по своей конструкции — закрытого типа с одним мотор — компрессором, с обеспечением полной герметизации холодильного агрегата.

Холодильная камера расположена в верхнем отсеке холодильника. Морозильная камера расположена в нижнем отсеке. Нижний отсек морозильной камеры состоит из трех ящиков для заморозки продуктов. Верхний отсек холодильной камеры состоит из шести полок для хранения продуктов в охлажденном состоянии.

Для абсорбционных типов холодильников, циркуляция хладагента происходит под воздействием нагревательного элемента \ТЭНа\, либо где циркуляция хладагента происходит иным путем, под воздействием иного источника тепла.

И третьим способом получения искусственного холода является термоэлектрический метод, где работа по передаче тепла от охлаждаемого объекта в более теплую среду осуществляется за счет движения, протекания электронов. То есть в этом примере охлаждение происходит за счет протекания электрического тока. Как известно, данный метод получения искусственного холода не применяется в бытовых, домашних холодильниках.

Компрессионный тип холодильников

Как выше уже упоминалось, принцип работы компрессионных типов холодильников заключается в работе мотор — компрессора, за счет которого происходит нагнетание, циркуляция хладагента в замкнутой системе холодильника.

Система состоит из:

  • конденсатора \змеевика\;
  • регулирующего вентиля;
  • испарителя

и компрессора. Работа компрессора приводится в действие электродвигателем, отсюда и исходит само название «мотор — компрессор».

Данная схема холодильного агрегата \рис. 1\ сопоставима к примеру с двухкамерным холодильником Атлант и сам основополагающий принцип работы ничем не отличается от однокамерных холодильников с одним мотор — компрессором.

На рисунке №2 представлена схема холодильного агрегата с одним мотор — компрессором, состоящей из:

  1. мотор — компрессора;
  2. теплового контура;
  3. конденсатора \змеевика\;
  4. цеолитового фильтра;
  5. капиллярной трубки малого сечения;
  6. испарителя холодильной камеры;
  7. испарителя морозильной камеры;
  8. нагнетательной трубки.

Принцип работы холодильника компрессионного типа заключается в следующем:

Нагретый хладагент под давлением поршня в цилиндре подается по нагнетательному трубопроводу в конденсатор. При повышенном давлении хладагент переходит из газообразного состояния в жидкое состояние, отдавая при этом тепло в окружающую среду. Далее, при прохождении хладагента через вентиль, в испарителе создается резкое падение давления, хладагент при низком давлении закипает. Сам процесс перехода жидкости через вентиль в испаритель называют дросселированием.

Испаритель, как Вы поняли, расположен в стенке морозильной камеры. При кипении хладагента в испарителе, отнимается тепло из окружающей среды, то есть морозильной камеры. Пары хладагента из испарителя всасываются компрессором и далее сжатый хладагент в цилиндре подается под давлением в конденсатор.

Повторяющиеся совершающиеся циклы циркуляции хладагента в замкнутой системе холодильника происходят снова и снова. То есть циркулирующий при работе холодильника хладагент отнимает тепло от морозильной камеры через испаритель и отдает тепло через конденсатор в окружающую среду.

Электрическая энергия, которая затрачивается при охлаждении морозильной камеры, зависит от выполняемой работы мотор — компрессором. Холодильные машины \холодильники\ определяются своей холодопроизводительностью, где учитывается количество тепла \ккал\, которое испаритель способен отнять в течении одного часа.

Холодопроизводительность одного и того же холодильника будет различной, в зависимости от самой температуры окружающей среды, поэтому, не рекомендуется допустим устанавливать холодильники вблизи отопительной системы \батарей, труб\.

Оценка холодопроизводительности разных типов холодильников определяется измерением температуры хладагента в соответствующих местах холодильника. К измерению температуры относятся такие места как:

  • температура всасываемых паров хладагента;
  • температура конденсации;
  • температура кипения хладагента в испарителе;
  • температура переохлаждения, жидкого хладагента перед регулирующим вентилем.

Значимое влияние на холодопроизводительность оказывают температуры:

  • кипения хладагента в испарителе;
  • конденсации хладагента.

Для определения холодопроизводительности, приняты следующие «стандартные» температурные условия для:

  • температуры кипения хладагента в испарителе — минус пятнадцать градусов по Цельсию;
  • температуры конденсации — минус тридцать градусов по Цельсию;
  • температуры всасываемых паров хладагента — пятнадцать градусов по Цельсию;
  • температуры жидкого хладагента перед регулирующим вентилем — тридцать два градуса по Цельсию.

Холодильные машины компрессионного типа по своей конструкции бывают закрытого и открытого типов, отличающиеся расположением компрессора и электродвигателя, а так же наличием разъемных соединений.

Для открытых типов, в холодильных машинах электродвигатель и компрессор установлены раздельно, где коленчатый вал компрессора приводится во вращение с помощью электродвигателя путем ременной передачи. В данных холодильниках такого типа утечка хладагента происходит в уплотнительных местах, то есть сальники остаются основным местом утечки хладагента.

Соединения трубопроводов между испарителем, конденсатором и компрессором имеют разъемное соединение. В местах таких соединений утечка хладагента также не исключается.

В холодильных машинах закрытого типа, в частности это касается в большинстве всех модификаций бытовых, домашних холодильников, — какие либо разъемные соединения отсутствуют. То есть здесь вся система наглухо заварена и запаяна, утечка хладагента практически невозможна. В данном примере, утечка хладагента может произойти по причине каких либо механических повреждений с образованием микротрещин.

Для холодильников закрытого типа или как их называют еще герметичными холодильными агрегатами , сложность ремонта состоит в невозможности разборки, замены деталей, допустим того же самого мотор — компрессора. Подобное проведение ремонта в данной теме будет приведено позже.

Хладагенты холодильников

Среди основных параметров холодильного агента \хладагента\ является температура его кипения. Взаимосвязь такова — чем ниже требуется понизить температуру охлаждаемого объекта \морозильной камеры\ тем ниже должна быть температура закипания хладагента.

  • Хладагент подбирается не только с учетом его закипания, также хладагент должен быть:
  • не ядовитым;
  • не воспламеняющимся;
  • взрывобезопасным;
  • с невысоким давлением для конденсации.

Обычно таким хладагентом, применяемым в домашних холодильниках является — фреон 12 .

фреон — 12

Фреон 12 представляет из себя тяжелый бесцветный газ, не ядовит. Слабый специфический запах газа ощущается при большой утечке, если концентрация газа в воздухе будет составлять более 20%. Температура закипания данного газа составляет почти минус 30 градусов по Цельсию, температура затвердевания — минус 155 градусов по Цельсию.

Среди прочих других хладагентов в холодильных машинах используются:

  • фреон -11;
  • фреон — 13;
  • фреон — 22.

Фреон — 12 как и другие хладагенты по своим свойствам текуч, способен проникать в малейшие микротрещины, поры металла. Данный газ способен также разъедать лаковые покрытия. В качестве изоляции обмоток электродвигателя \герметичного агрегата\ применяются специальные лаки.

При ремонте, следует учитывать, что данный газ хорошо смывает ржавчину с внутренней поверхности всей системы, — соответственно, детали должны быть чистыми. Жидкий фреон при попадании на кожу способен вызвать обмораживание поверхности кожи, какого либо раздражающего действия на органы дыхания фреон не оказывает.

Испарение газа не влияет на вкус хранящихся продуктов и не изменяет строение каких либо продуктов хранящихся в холодильнике. Трущиеся детали мотор — компрессора в процессе проведения ремонта тщательно смазываются, для этой цели применяются специальные холодильные рефрижераторные масла.

Корррозия внутренних поверхностей металла вызывается из так называемого старения масла — его окисления, попадания кислорода воздуха в состав специального рефрижераторного масла. Поэтому, перед нанесением, масло тщательно сушится и в состав масла вводят специальные антиокислительные присадки.

Коррозийность в составе фреона впоследствии может вызвать закупорку небольших проходных сечений, которые имеются в системе циркуляции. Смазочное масло в таких целях используется марки ХФ 12-16. Следует также учитывать растворимость смазочного масла в фреоне, в состав масла входит парафин, что впоследствии может также вызвать закупорку малых проходных сечений в системе холодильника. Данная марка смазочного масла применяется в холодильных компрессионных машинах закрытого типа с использованием в системе фреона -12, то есть может использоваться в современных холодильниках домашнего назначения.

Принцип работы и устройство холодильника

Домашние холодильники имеют две камеры для хранения пищевых продуктов:

  • холодильная;
  • морозильная

камеры \отделения\. Если продукты имеют длительные сроки своего хранения в замороженном виде, в этих целях служат специальные домашние холодильники. Для продуктов хранящихся просто в охлажденном виде \в холодильной камере\, температура колеблется в пределах от 2 до 8 градусов по Цельсию.

Периодическое отключение холодильника осуществляющееся за счет работы терморегулятора, \цикличность работы\ и не влияют на условия заморозки, хранения продуктов питания.

От желания владельца, ручной регулировкой терморегулятора осуществляются незначительные изменения температуры в камере холодильника. Так же с помощью терморегулятора, его настройки, обеспечивается необходимая пониженная температура в зависимости от температуры окружающей среды \ теплое помещение, прохладное помещение\.

терморегулятор холодильника

Такие названия как термостат холодильника и терморегулятор холодильника абсолютно одинаковы по своему предназначению.

Теплозащитное реле холодильника предназначено для защиты обмоток:

  • статора;
  • ротора

электрордвигателя от резких скачков напряжения, токовых перегрузок.

мотор — компрессор холодильника

Мотор — компрессор холодильных машин закрытого типа наглухо заварен в металлическом кожухе как и другие детали холодильной системы в целом.

Тепло — защитное реле \пуско — защитное реле\ имеет разъемное соединение с мотор — компрессором холодильника и в случае своей неисправности теплозащитное реле подлежит своей замене.

пуско — защитное реле холодильника Атлант

Различия между названиями: » пуско — защитное реле и теплозащитное реле » — разницы никакой не составляет.

Почему именно выбрали компрессионный агрегат закрытого типа для домашних холодильников? Данная конструкция домашних холодильников позволяет практически исключить утечку рабочей жидкости — фреона. То есть заводом — изготовителем при выпуске холодильников, уделяется особое внимание в изготовлении неразъемных соединений в циркулирующей системе.

В свою очередь, в данных типах холодильников обеспечивается экономный расход электроэнергии. При температуре окружающей среды воздуха 25 градусов по Цельсию — расход потребляемой электроэнергии составляет до 1,2 киловатт в час.

Емкость холодильной камеры определяется геометрическим способом, то есть измеряется либо в кубических дециметрах либо в литрах. По нормам, из расчета на один килограмм продуктов приходится 6 — 8 литров камеры холодильника. По своей емкости домашние холодильники обычно не превышают 400 литров.

Из расчета на количество человек в семье, при приобретении холодильника, удобны следующие варианты выбора холодильников:

  • для количества семьи из двух человек емкость камеры холодильника подбирается на 100 — 160 литров;
  • для количества семьи из трех человек емкость подбирается на 160 — 200 литров;
  • из четырех человек количества семьи придерживаются емкости 240 — 300 литров;
  • более четырех человек емкость камеры составляет до 400 литров.

Для лучшего отвода тепла испарителем, в холодильниках целесообразней устанавливать полки в виде металлической решетки. Изготовленные полки таким способом, позволяют равномерно распределять температуру в холодильной камере.

На дверце, со стороны морозильной камеры в холодильниках установлен кнопочный выключатель света. При открывании дверцы холодильника, контакты замыкаются и камера холодильника освещается электрической лампочкой.

Для хранения замороженных продуктов в больших количествах, предусмотрены холодильники с более объемным морозильным отделением. Для морозильного отделения \хранения замороженных продуктов\ можно воспользоваться следующим расчетом, — на пол килограмма замороженных продуктов приходится один литр емкости \морозильной камеры\.

Снежный покров в камере образовывается из конденсата воздуха, поступающего при открывании дверцы, а так же при наличии недостаточного уплотнения при закрытой дверце холодильника. Образовавшаяся снежная шуба должна систематически удаляться, так как такое образование ухудшает отвод тепла испарителем из камеры.

Обычно раньше в конструкции холодильника был предусмотрен поддон для сбора талой воды при разморозке. В настоящее время изготавливают холодильники, где в самой морозильной камере расположено отверстие для стекания воды образовавшейся в результате конденсата. Вода при стекании в отверстие затем просто испаряется. Владельцы холодильников при их разморозке \удалении наледи, снеговой шубы\, — отключают холодильник и при открытых дверцах происходит эффективная полная разморозка. Так же в некоторых конструкциях холодильников предусмотрены нагревательные элементы \ТЭНы\ для процесса разморозки. То есть происходит как полуавтоматическая так и автоматическая разморозка камеры при выключенном мотор — компрессоре с участием терморегулятора.

Автоматическая разморозка происходит в автоматическом режиме, периодически через определенное время и без участия владельца. Вода в этом примере, отводится наружу по трубке из камеры, где она затем испаряется.

Домашние холодильники — и их типы

Способы вырабатывания искусственного холода в холодильниках различные и зависят от типа холодильной машины. Как уже упоминалось, холодильники подразделяются на:

  • компрессионные;
  • абсорбционные;
  • термоэлектрические \полупроводниковые\.

абсорбционный холодильник Ezetil Absorber A — 4000

термоэлектрический холодильник Tropi Cool Classik

По своему предназначению холодильники разделяют на:

  • двухкамерные;
  • однокамерные;
  • низкотемпературные.

Однокамерные холодильники используются для хранения продуктов в охлажденном состоянии.

Двухкамерные холодильники используются для хранения как замороженных так и охлажденных продуктов.

Низкотемпературные холодильники используются для замораживания, а так же для хранения замороженных продуктов.

низкотемпературный холодильник ХНТ — 200

Так же по своему исполнению холодильники бывают:

  • настенные;
  • встраиваемые;
  • настольные;
  • напольные.

встраиваемый холодильник

Низкотемпературные холодильники обычно выпускают в виде сундука, крышка \дверца\ такого холодильника расположена сверху.

Однокамерные напольные \в виде шкафа\ холодильники имеют более распространенное применение в домашнем быту.

Для своей эксплуатации так же удобны холодильники небольших размеров, так называемые «шкафчики — столики».

В приобретении, в выборе холодильников конечно же все зависит от желания самого покупателя. К примеру, комбинированные напольные холодильники могут совмещаться допустим с кухонным шкафом.

На заказ, холодильный шкаф можно выполнить совмещенным \комбинированным\ с сервантом. Отделка данных холодильных шкафов выполняется под цвет с совмещенной мебелью.

Настенные холодильники имеют двустворчатые двери, по своей конструкции напоминают настенный шкафчик небольших размеров.

холодильный шкаф \настенный, настольный\ Liebherr FKv 503 Premium

Встроенные холодильники получили наименьшее распространение. Для охлаждения конденсатора холодильный агрегат во встроенном шкафу размещают с учетом обеспечения циркуляции воздуха.

В настольных холодильниках, охлаждение происходит обычно термоэлектрическим способом.

Двухкамерные холодильники состоят из двух камер хранения продуктов, — это камера охлаждения и морозильная камера.

Низкотемпературные холодильники или как их еще называют «морозильники», — применяются для длительного хранения продуктов в замороженном состоянии.

В следующих темах Вы ознакомитесь с подробным описанием ремонта холодильников и с их электрическими схемами.


Твитнуть

Рассказать ВК

Чтобы приобрести качественный холодильник с теми функциональными возможностями, которые нужны именно нам, необходимы элементарные знания, о том, что представляет собой холодильник.

Из курса физики

Откуда берется холод в домашнем холодильнике? Чтобы понять это, достаточно вспомнить, как охлаждается кожа, если протереть ее ваткой, смоченной эфиром или иным летучим веществом. Для испарения плёночки жидкости нужно тепло, и она отбирает его у поверхности кожи. Именно тепловой эффект испарения жидкости (или, как нас учили на уроках физики, изменения ее фазового состояния) используется в холодильных машинах.

Изобретателям и инженерам пришлось упорно поработать, чтобы создать:

  • холодильные аппараты с замкнутым контуром, в одной части которого происходит испарение, а в другой части - конденсация рабочего тела;
  • специальные вещества (хладагенты), которые годами циркулируют в контуре холодильнике в качестве рабочего тела, то испаряясь, то снова конденсируясь;
  • надежные электрические машины (компрессоры), которые "гоняют" хладагент по замкнутому контуру холодильника.

Движение по контуру

Схема движения хладагента по контуру показана на рис. 1. Повышенное давление на выходе работающего компрессора толкает газообразный хладагент в конденсатор, где происходит первое изменение его фазового состояния - газ превращается в жидкость. При этом выделяется тепло, которое отводится в окружающую среду, то есть идет на нагрев воздуха кухни. В этом легко убедиться, заглянув "за спину" холодильника и потрогав его заднюю стенку. У многих моделей холодильников конденсатор виден невооруженным глазом - это большой черный теплообменник на задней стенке, представляющий собой длинную, многократно изогнутую трубку.

Специалисты сервисного центра "Фрост ремонт" рекомендуют периодически очищать конденсатор от пыли - этим вы улучшите условия отдачи тепла в воздух.

После того как хладагент стал жидким, необходимо, чтобы произошло еще одно изменение фазового состояния, и жидкость стала газом. Для этого жидкий хладагент просачивается через длинный узкий канал - капиллярную трубку. Проход через капилляр дается хладагенту нелегко, на это тратится весь запас давления, который был создан компрессором.

Что же теперь случится с хладагентом? Протиснувшись через капилляр и потеряв весь свой былой напор, он попадает в испаритель холодильника, где закипает. Именно это нам и нужно. Вспомним ватку с эфиром: ведь испарение жидкости отнимает тепло от тела, находящегося в контакте с ней. Испаритель холодильника обвивает своими трубками самую холодную его часть - морозильную камеру. Это внутренний эпицентр холода, откуда холодный воздух растечётся (сам или под действием принудительной вентиляции) по отсекам и полочками нашего белого шкафа.

Сделавшему свое дело газообразному хладагенту остается только вернуться назад в компрессор, где он вновь будет "подкачан" и под высоким давлением опять поступит в контур, продолжая свое непрерывное движение.

Основные элементы холодильного контура показаны на рис. 2. Холодильный аппарат имеет много других элементов. Например, прислушавшись к работе своего холодильника, вы наверняка заметите, что компрессор работает не все время. Периодически он выключается, а затем включается снова. Дело в том, что внутри холодильника имеется термостат - устройство, контролирующее температуру в холодильной камере. Регулировочная рукоятка термостата находится на панели управления, и, поворачивая ее, вы можете "поддать холода", если в помещении жарко, или, наоборот, убавить производство холода, если на кухне прохладно. Когда заданная вами температура будет достигнута, термостат сработает на отключение компрессора. Делается это, конечно, не для того, чтобы дать компрессору отдохнуть, а для того, чтобы не переохладить полость холодильника и поддерживать в ней именно ту температуру, которая задана.

Что такое No Frost

Испаритель - самое холодное место холодильника, его "полюс холода". Когда внутри трубок испарителя кипит хладагент, на наружной поверхности этого теплообменника нарастает ледяная "шуба" - это конденсируется влага из воздуха, которым заполнена морозильная камера. Любая хозяйка знает: дверцу морозильника нельзя долго держать открытой, иначе теплый воздух из кухни наполнит камеру, и тогда "шуба" станет толще, а значит, раньше придется размораживать морозильник.

В традиционных холодильниках операцию оттаивания или размораживания проводят один-два раза в год. Аппараты с ручным размораживанием для этого просто отключают от сети питания, оставив открытой дверцу морозильной камеры. Здесь нужно проявить терпение и дать корочке льда растаять самой, не пуская в ход ножей, скребков и иных острых орудий - ими недолго повредить испаритель. Если уж совсем не терпится, поставьте в морозильник кастрюльку с горячей водой.

После того как ледяная корка полностью сойдет, нужно вымыть внутреннюю поверхность камеры теплой водой, вытереть насухо, проветрить часок-другой, закрыть дверцу и включить холодильник в сеть.

Холодильник с полуавтоматическим размораживанием достаточно только периодически отключать, нажав на кнопку датчика-реле на корпусе термостата. Включится он сам, после того как растает ледяная корочка на испарителе.

В традиционных холодильниках воздух внутри камеры движется крайне медленно: более теплые и легкие его порции поднимаются вверх, холодные и тяжелые опускаются вниз, повинуясь законам естественной конвекции.

Появление в холодильниках систем принудительной циркуляции воздуха (для этого внутри камер имеются специальные вентиляторы) позволило добиться равномерного распределения его по объему камер, донеся холод до самых укромных уголков. Благодаря этому в холодильниках стали широко применяться эстетичные и легко моющиеся полки из стекла, которые пришли на смену прежним решеткам.

С помощью принудительной вентиляции удалось победить ледяную "шубу" и полностью избавиться от операции размораживания.

Так в холодильниках появилась система No Frost, при которой иней в морозильной камере не образуется.

Точнее говоря, ледяную "шубу" вывели за пределы морозильной камеры, спрятав испаритель за ее стенкой. Именно туда вентилятор гонит воздух, чтобы влага вымораживалась на поверхности испарителя, а не на стенке камеры. Испаритель снабжен электрическим нагревательным элементом, а рост "шубы" на нем находится под неусыпным контролем электронной системы управления холодильника. Каждые 6-8 ч автоматически включается нагрев, и поверхность испарителя освобождается от намерзшей ледяной корочки.

У холодильников с системой No Frost есть одна особенность, которую следует иметь в виду. Обдув продуктов воздушными потоками, создаваемыми в полости холодильника, приводит к их обезвоживанию и заветриванию. Поэтому продукты в таком холодильнике следует хранить в упаковке .

О чем плачет холодильник

Понятно, что морозильную камеру периодически нужно оттаивать, хоть вручную, хоть автоматически. На то она и называется морозильной, что в ней температура достигает до -18°С, а значит, образуется лед или по крайне мере иней.

Но иногда в инструкции к холодильнику можно прочесть и об оттаивании холодильной камеры, где температура выше нуля. Такое оттаивание тоже необходимо. Происходит оно автоматически, а тает при этом влага, намерзшая на пластиковой задней стенке холодильной камеры. За этой стенкой во многих современных аппаратах находится отдельная секция испарителя, отвечающая за холод в холодильной камере. Воздух в камере действительно имеет положительную температуру, но стенка холоднее, вот и образуется на ней тонкий слой инея, как на оконном стекле, когда на улице мороз, а в доме тепло. Когда компрессор отключается, слой инея на стенке тает, и капельки воды стекают вниз, поступая по трубке в кювету на крышке компрессора. В этот момент холодильник как бы "плачет", поэтому подобные конструкции называются "плачущая стенка" .

Один или два компрессора?

Современные холодильники могут иметь отдельный испаритель для каждой из камер - морозильной и холодильной. Не удивительно, что многие из них, особенно те, что отличаются высоким ростом и внушительным объемом камер, имеют и два компрессора, каждый из которых работает на свою камеру.

В этом есть определенный плюс: например, уезжая в отпуск, вы можете отключить компрессор холодильной камеры и оставить ее открытой для проветривания. В работающей морозильной камере при этом останутся продукты длительного хранения.

Есть и минус: холодильник с двумя компрессорами дороже (компрессор - самая дорогая деталь), и шумят два компрессора сильнее, чем один.

Блестящим инженерным решением стало использование в ряде моделей холодильников электромагнитного клапана, направляющего поток хладагента то в морозильную, то в холодильную камеру (рис. 3). Такой клапан позволяет обойтись всего одним компрессором, но заставляет его при этом работать "за двоих". В холодильнике с клапаном тоже есть "отпускной" режим, когда холодильную камеру можно отключить, направив до вашего возвращения весь хладагент в испаритель морозильной камеры.

Полное отключение холодильной камеры вовсе не обязательно. Например, в режиме "Отпуск" холодильников Whirlpool в течение 90% времени электромагнитный клапан направляет хладагент в испаритель морозильной камеры, и в течение 10% времени - в холодильную камеру, где при этом поддерживается температура 12-13°С.

От мала до велика

Спектр современных бытовых холодильников необычайно широк - на одном его краю находятся малыши, в буквальном смысле входящие под столешницу кухонной мебели, на другом - гиганты класса Side-by-side, внос которых в квартиру порой создает отдельную проблему.

Малогабаритный однодверный холодильник высотой 85 см и общим объемом 125-180 л (рис. 4) может иметь небольшой морозильник объемом 17-18 л с внутренней дверцей, а может и не иметь его - таковы, например, холодильники-минибары, применяемые для оборудования гостиничных номеров. В минибаре морозильник не обязателен, достаточно небольшого отсека с отрицательной температурой, где помещается лоток для намораживания кубиков льда.

Двухдверные холодильники могут различаться расположением морозильной камеры. В холодильниках классической компоновки (рис. 5) морозильник расположен сверху (англ. Top mounted). Общий объем таких холодильников достигает 330 л, а объем морозильной камеры - 105 л.

Другой популярный вариант компоновки двухдверных холодильников - так называемый тип Combi , в котором морозильная камера располагается снизу (рис. 6). Это, пожалуй, самые "рослые" из современных бытовых холодильников: высота некоторых моделей превышает 2 м. Общий объем холодильников данного типа составляет 180-410 л при объеме морозильной камеры 70-175 л.

Особенностью холодильников Combi является относительно большой объем морозильной камеры: если у холодильников с верхним ее расположением на морозильник приходится лишь до 30% общего объема, то у Combi объем морозильника может достигать 60% общего объема шкафа.

"Королем кухни" по праву можно считать холодильник класса Side-by-side (рис. 7). У этого гиганта, американца по происхождению, холодильная и морозильная камеры находятся не друг над другом, а рядом, в буквальном переводе с английского - бок о бок. Общий объем такого холодильника достигает 730 л при объеме морозильной камеры до 290 л. Большинство холодильников этого класса имеет на передней панели дозатор охлажденных напитков и кубиков льда, а сам холодильник подключается не только к электрической розетке, но и к линии подачи воды.

Донести холод до каждого уголка столь вместительного шкафа можно только с помощью системы принудительной циркуляции воздуха. Эта система может быть единой для обеих камер холодильника, а может быть и так, что каждая из камер имеет свою независимую систему охлаждения (рис. 8). В последнем случае исключается перенос запахов из одной камеры холодильника в другую.

Если перспектива транспортировки и подъема в квартиру такого гиганта, как холодильник Side-by-side пугает вас, есть альтернативный вариант. Например, однодверный холодильник Bosch KSR 38493 и однодверный морозильник Bosch GSE 34494 выглядят как два брата-близнеца, только у холодильника дверца открывается справа налево, а у морозильника - слева направо. Каждый из братьев имеет высоту 185 см, ширину 60 см и глубину 65 см. Поставьте их рядом - с виду чем не Side-by-side? А транспортировать и заносить их в квартиру можно по отдельности.

Если есть одно- и двухдверные холодильники, то почему не быть трехдверным?

Точнее, холодильник Bosch KDF 324A2 (рис. 9) нужно назвать трехкамерным .

  • Сверху он имеет морозильную камеру объемом 65 л.
  • В центральной холодильной камере есть "сухая" зона сохранения свежести объемом 171 л (здесь влажность поддерживается на уровне 50%) и расположенная под ней "влажная" зона сохранения свежести: объемом 22 л (здесь влажность составляет 95%).
  • В самом низу находится холодильное отделение объемом 64 л с выдвижной тележкой.

Влажность помогает сохранять продукты

Оказывается, внутри холодильника могут быть зоны не только с различной температурой, но и с различной влажностью.

Во влажной зоне сохранения свежести продукты хранятся при нулевой температуре и относительной влажности 90%, что идеально подходит для овощей и фруктов. Благодаря тому что "влажный" бокс накрыт специальным фильтром, хранящиеся в нем продукты не теряют влагу. Микроорганизмы в таком боксе не размножаются, а витамины и минеральные вещества сохраняются.

В сухой зоне сохранения свежести с температурой, близкой к нулю, и относительной влажностью воздуха 50% в течение многих дней остаются свежими и ароматными: колбаса, рыба и морепродукты. Мясо и птица могут храниться здесь еще дольше.

Такая система хранения продуктов в зонах с различной влажностью в холодильниках Bosch носит название VitaFresh . В пользу этой системы говорит то, что благодаря ее применению продукты сохраняются в три раза дольше, сохраняя при этом свежесть, натуральный цвет, форму и высокое содержание витаминов.

Особая третья камера под названием CoolSelect Zone есть и в холодильниках Side-by-side производства компании Samsung (рис. 10). Владелец холодильника может выбирать необходимый режим работы этой камеры, устанавливая нужную температуру в зависимости от помещенных в нее продуктов при помощи сенсорной панели управления.

  1. Режим быстрого охлаждения позволяет всегда иметь под рукой холодное пиво.
  2. Режим оттаивания, при котором в камеру поочередно подается то теплый, то холодный воздух, позволяет размораживать продукты без потери влаги и изменения цвета.
  3. Режим мягкого замораживания (-5 °С) создает оптимальные условия для хранения свежего мяса, птицы и рыбы, которые при этой температуре легко нарезаются ломтиками.
  4. Режим сохранения свежести (2 °С) способствует сохранению влаги в продуктах.
  5. Режим охлаждения (-1 °С) оптимален для хранения овощей и фруктов.

Морозильные камеры

Если вы хотите сохранить до следующего лета обильный урожай, собранный со своего дачного участка, морозильной камеры обычного холодильника может оказаться недостаточно. Для этого существуют аппараты, представляющие собой один большой морозильник.

(рис. 11) представляет собой шкаф объемом до 330 л, на полках которого вы без труда разложите любые продукты - от мяса до ягод. Вертикальные морозильники могут иметь систему NoFrost, электронную систему управления и все остальные функции современного аппарата для создания холода. Единственным недостатком вертикального шкафа является то, что когда вы открываете его дверь, тяжелый холодный воздух вытекает вниз, а на его место стремительно проскальзывает теплый воздух помещения, поэтому нужно поменьше держать дверь такого морозильника открытой.

Другое дело - горизонтальные морозильники, или морозильники-лари (рис. 12). Вы можете сложить продукты, предназначенные для длительного хранения, на самое дно, и быть уверенными, что в этой самой холодной зоне с ними ничего не случится. Вот только, чтобы потом добраться до этого дна, придется переворошить все, что лежит сверху.

У всех холодильников есть свои плюсы и минусы. Какой из них выбрать - решать вам.

У каждого из нас дома есть . Сложно себе представить, что еще каких-то 80 лет назад этот бытовой прибор еще не изобрели. Но далеко не каждый задумывается об устройстве и принципе действия холодильника. А ведь это очень интересный и познавательный момент: знания о том, как работает ваш холодильник, всегда могут пригодиться в случае каких-либо неисправностей или поломки, а также помогут выбрать хорошую модель при покупке.

Принцип работы бытового холодильника

Работа обычного бытового холодильника основывается на действии хладагента (чаще всего это фреон). Это газообразное вещество перемещается по замкнутому контуру, меняя свою температуру. Достигая под давлением точки кипения (а у фреона это от -30 до -150°С), он испаряется и отнимает тепло у стенок испарителя. В результате этого температура внутри камеры снижается в среднем до 6°С.

«Помогают» работе хладагента такие составляющие холодильника, как компрессор (создает нужное давление), испаритель (забирает тепло изнутри холодильной камеры), конденсатор (отдает тепло в окружающую среду) и дросселирующие отверстия (вентиль терморегуляции и капилляр).

Отдельно следует сказать о принципе работы компрессора холодильника. Он предназначен для того, чтобы регулировать перепады давления в системе. Компрессор затягивает испаренный хладагент, сжимает его и выталкивает обратно в конденсатор. При этом температура фреона повышается, и он опять превращается в жидкость. Работает холодильный компрессор за счет электродвигателя, который располагается внутри его корпуса. Как правило, в холодильниках используются герметичные поршневые компрессоры.

Таким образом, принцип действия холодильника можно коротко описать как процесс отдачи внутреннего тепла в окружающую среду, в результате которого воздух в камере охлаждается. Этот процесс носит название «цикл Карно». Именно благодаря ему продукты, которые мы храним в холодильнике, долгое время не портятся благодаря постоянно поддерживаемой низкой температуре.

Также следует отметить, что в разных местах холодильника температура также различна, и этот факт можно использовать для хранения разных продуктов. В дорогих современных холодильниках типа Side-by-Side существует четкое разделение на зоны: это обычное холодильное отделение, «нулевая зона» (biofresh) для мяса, рыбы, сыров, колбас и овощей, морозильная камера и зона так называемой суперзаморозки. Последняя характеризуется очень быстрым (в течении нескольких минут) замораживанием продукта до -36°С. В результате образуется кристаллическая решетка принципиально иной формы, при этом сохраняется больше полезных веществ, чем при обычной заморозке.

Принцип работы холодильника ноу фрост

Холодильники с системой ноу-фрост (no frost) работают по такому же принципу, но определенное отличие существует в системах разморозки. Обычные бытовые холодильники с испарителем капельного типа необходимо периодически размораживать, чтобы иней, намерзший на стенке камеры, не мешал дальнейшей работе агрегата.

Вам не придется беспокоиться об этом, если ваш холодильник оснащен системой ноу фрост. Благодаря непрерывному процессу циркуляции холодного воздуха внутри камеры влага, намерзающая на стенках, оттаивает и стекает в поддон, откуда она вновь испаряется.

Холодильники - это приборы нового поколения, более удобные в пользовании, чем старые модели с капельной системой. Они менее энергозатратны, а охлаждение продуктов в них происходит более равномерно. Однако и у них есть свои недостатки, основанные на описанном выше принципе работы. Из-за того, что в камере постоянно циркулирует воздух, он забирает влагу из продуктов питания, которые со временем высыхают. Поэтому в ноу-фрост продукты следует хранить только в закрытых емкостях.

Теперь, зная о том, как должен работать холодильник, у вас не будет проблем с выбором и покупкой нового агрегата и его эксплуатацией.

Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.

Кратко о типах оборудования

По принципу работы данное оборудование можно разделить на четыре вида:

  • Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
  • Абсорбционное, для работы использует не электрическую, а тепловую энергию.
  • Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
  • Компрессорное.

Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.

Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.

Рис. 1. Принцип работы холодильной установки

Обозначения:

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

Теперь рассмотрим, алгоритм работы системы:

  1. При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
  2. Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
  3. Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Классификация компрессоров в холодильном оборудовании

Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:


У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.


Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.

  1. Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
  2. Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.

Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.

Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.


При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.


Конструкция поршневого компрессора в виде схемы

Обозначения:

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Крепление подвески.
  16. Пружина.
  17. Кронштейн подвески.
  18. Подшипники, установленные на вал.
  19. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.

Устройство роторных механизмов

Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.


Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.


Конструкция линейного роторного компрессора в виде схемы

Обозначения:

  1. Отводной патрубок.
  2. Отделитель масла.
  3. Герметичный кожух.
  4. Фиксируемый на кожухе статор.
  5. Обозначение внутреннего диаметра кожуха.
  6. Обозначение диаметра якоря.
  7. Якорь.
  8. Втулка.
  9. Лопасти.
  10. Подшипник на валу якоря.
  11. Крышка статора.
  12. Вводная трубка с клапаном.
  13. Камера-аккумулятор.

Устройство инверторного компрессора холодильника

По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.

Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: