Организация памяти вычислительных систем.

Прежде чем рассматривать технологию физической организации памяти в ЭВМ, необходимо отметить следующее:

1. Память в ЭВМ имеет многоуровневую организацию.

2.Память классифицируется по способу доступа к данным.

Все виды памятей,имеющих адресные структуры, функционируют по принципу взаимно- однозначного соответствия между каждым элементом множества адресного пространства и каждым элементом множества данных, хранимых в памяти.

Память с последовательным доступом исключает возможность произвольного доступа к элементу памяти, доступ к которому определяется алгоритмом очередности в структуре памяти при однородной ее организации или алгоритмом последовательного доступа от высшего уровня к низшему в многоуровневой организации (файловая система).

Ассоциативная память использует в качестве поиска элемента данных в памяти ассоциативный признак(тег, в качестве которого может быть использован код,ключ,адрес или его часть адресной памяти, хранящей его копию). Благодаря чему элемент данных может находиться в любом месте памяти, нарушая принцип взаимно- однозначного соответствия, характерный для адресных структур памятей.

3. По способу хранения.

Статические

Динамические

Постоянные

Флэш память

4.Память в ЭВМ имеет модульную структуру. В основе которой лежит модульное построение, дающее возможность формирование переменного объема накопительного блока путем наращивания или уменьшения числа модулей в конфигурации.

Физическая память вычислительной системы разделяют на внешнюю и оперативную. Внешняя память предназначена для долговременного хранения информации и сохраняется в пассивном состоянии вычислительной системы даже в выключенном состоянии.

Внешняя память в современных вычислительных системах реализована в основном на дисках и магнитных лентах,а также различного рода энергонезависимой памяти.

Внешняя память физически реализуется как устройства системы ввода вывода, которые имеют связь с процессором и памятью посредством интерфейсов ввода вывода, функционирование которых основано на двух различных архитектурных решениях: системная шина и каналы ввода вывода.

Что же касается оперативной памяти,физическая и логическая организация которой является предметом рассмотрения данной темы, конструктивно разделена на две части: запоминающее устройство и блок управления или контроллер памяти.

Контроллер памяти является координатором оперативной памяти, он связан с интерфейсами с процессором и системой ввода вывода, получая от них запросы за данными как для записи их память,так чтение из нее.

Получив запрос,контроллер ставит его в очередь обращения к запоминающему устройству (ЗУ) согласно приоритету, отдавая предпочтение системе ввода вывода, организует связь с ЗУ с соответствии с протоколом интерфейса, соединяющим их.



Функциональные возможности контроллера памяти находятся в прямой зависимости от сложности функциональных возможностей системы. Так, например, в симметричных мультипроцессорных системах контроллер памяти является координатором запросов за данными от всех процессоров системы,принимая их на исполнение или временно блокируя, если данные уже находятся в обработке у другого процессора,таким образом обеспечивая когерентность данных в системе.

Современная оперативная память в вычислительных системах по способу хранения относится в большинстве случаев к динамической памяти, которая требует периодически во время работы режима восстановления информации в памяти, то есть циклов регенерации, во время которых обращение к памяти со стороны внешних агентов блокируется. Организация таких циклов и их периодичность входит в функции контроллера.

Для уменьшения влияния циклов регенерации на производительность памяти стали использовать различные методы. Это, во-первых, использование модульной технологии построения ЗУ с организацией банков и чередованием адресов, то есть с размещением данных с четными и нечетными адресами в разных модулях(микросхемах) памяти к которым возможно одновременное обращение в цикле памяти, таким образом совмещая выборку данных в одном модуле с циклом регенерации в другом, при отсутствии режима пакетной выборки то есть одновременной выборки данных по четному и нечетному адресу.

Также стали использовать режим автоматической регенерации ячеек памяти, к которым происходит обращение за данными в режиме чтения и режим внутренней регенерации всех ячеек памяти в микросхемах. Но для этой цели в каждую микросхему памяти пришлось встроить внутренний контроллер и возложить на него вышеуказанную и другие функции, освободив внешний контроллер для других боле важных задач.

Что касается архитектуры самих ЗУ, которые предназначены для хранения,

записи и считывания данных можно отметить следующее.

Используя в качестве запоминающих элементов на первоначальном этапе развития вычислительной техники электронные трубки, а в последствии ферритовые сердечники и в конечном результате перейдя на полупроводниковую технологию,в которой стали использовать емкостные свойства изолированного стока полевого транзистора. конечной целью этих изменений было и будет решение следующих задач:

Увеличение емкости памяти

Увеличение быстродействия

Повышение надежности хранения и снижение энергоемкости памяти.

Если системная память современных 32х разрядных компьютеров,имеющих адресную шину обращения к памяти в 32 разряда, дает возможность наращивать свою емкость до 4ГБТ, то для ЭВМ 2и 3 поколений, имеющих ферритовую память, емкость даже суперкомпьютеров того времени исчислялась только десятками и сотнями кбт Так емкость памяти БЭСМ6 отечественного суперкомпьютера в свое время составляла около768кбт,даже не доходя до мегабайтной границы.

Скачок в объеме оперативной памяти произошел с введением полупроводниковой технологии при изготовлении запоминающих устройств памяти,благодаря которой емкость оперативной памяти перешагнула мегабайтный рубеж. Одной из первых ЭВМ, которая имела такую память была IBM7030 в1961году.Размер ее памяти составлял 2МГБТ. Конструкторские наработки в этой машине были использованы позже в известных сериях машин IBM360 и IBM370. Эти машины, имеющие адресные шины обращения к памяти в 24 разряда имели возможность наращивания объемов своих памятей до16 МГБТ. С внедрением 32х разрядной шины в таких ЭВМ как ESA370, IBM4381 память хоть и не перешла гигабайтную границу, но имела возможность наращивания от 16 до64мгбт.

Современные мейнфреймы Zархитектуры такие,например, как Z9BC имеют возможность наращивания до 64ГБТ,имея 64 разрядную шину, а ЭВМZ10 даже до 1,5ТРБТ.

Что же касается наших отечественных ЭВМ объем оперативной памяти машин ЕС Ряд 3(ЕС1046,ЕС1066) достиг 8Мгбт, машин которым суждено было закончить свой исторический путь развития на этом этапе.

Были еще ЭВМ класса суперкомпьютеров, предназначенных для оборонных целей системы ПРО,которые имели емкость памяти большего размера, например, проект М13(объем оперативной памяти этого суперкомпьютера имел возможность расширения до34мгбт).

Следующей одной из основных характеристик физической организации памяти является время выборки данных,которое составляло для ЭВМ 2ого поколения, имеющих память на магнитных сердечниках, 10-12мкск. И только с внедрением полупроводниковой памяти время выборки данных сократилось на порядок и стало от 1,5 до0,5мкск.

Динамическая память по своему характеру и способу хранения данных, несмотря на более простую структуру чем статическая, является наиболее инерционной, то есть медленной частью вычислительной системы и даже на значительное сокращение циклов обращения к ней таковой остается в настоящее время.

Эта и является причиной построения многоуровневой памяти в вычислительных системах,в состав которой входят регистровые файлы и различное число уровней быстродействующей буферной памяти, выполненной на статических (триггерах) запоминающих элементах.

Современная архитектура вычислительных систем оперирует такими понятиями как виртуальная память,отображение которой на физическую память представляется совокупностью оперативной и внешней памятью. Это стало возможным в результате идеи, выдвинутой английскими учеными Манчестерского университета суть которой заключалась в разделении понятий размера адресного пространства от конкретного размера адресного оперативной памяти в системе. Таким образом адресное пространство системы стало независимо от размера оперативной памяти и стало представляться в распоряжение программиста как виртуальная память, давая ему широкие возможности при написании программ, не ограничивая себя размером оперативной памяти.

Для реализации этой идеи потребовалось введение таких понятий как логические адреса и виртуальные страницы, представляющие области памяти определенного равного размера, на которые стало разбиваться все адресное пространство виртуальной памяти.

Реальная память стала разбиваться на физические страницы, размеры которых соответствовали размеру виртуальных страниц.

Фактически содержимое виртуальной памяти может находиться в оперативной памяти и тогда виртуальная страница приобретает статус физической, причем в разрешенной любой области оперативной памяти по усмотрению операционной системы или в противоположном случае ЗУ внешней памяти.

Следовательно вычислительная система,реализующая механизм виртуализации памяти должна иметь механизм перемещения содержимого виртуальных страниц с внешней памяти в оперативную и обратно в процессе выполнения программ. Такой механизм носит название файловой системы, a механизм динамической переадресации,например, в системах фирмы IBM или механизм страничного преобразования в процессорах INTEL осуществляют преобразования виртуальных адресов в физические.

Было введено понятие логических адресов. Адреса команд и данных,формируемые в процессе выполнения команд в процессоре приобрели статус логических, так как перестали соответствовать физическим адресам памяти, а указывали только на местонахождение в адресном пространстве программного кода.

Более того, в системе стало возможным существование нескольких виртуальных адресных пространств, имеющих свои схемы преобразования логических адресов в физические.

Виртуальная память- это объект системы, рассматриваемый на уровне операционной системы и следовательно ее структуру целесообразней характеризовать с точки зрения логической организации памяти.

Прежде чем давать характеристику логической организации памяти, необходимо отметить, что адресация физической памяти осуществляется по- байтно то есть минимальной адресуемой единицей является байт,а следовательно все размеры структурных элементов логической организации памяти должны быть кратны целочисленному числу байт в них.

Программа оперирует такими понятиями как оператор, операнды, константы, переменные,выражаемые в числовой или символьной форме. В результате трансляции программного кода они представляют двоичные коды,состоящие из целочисленного количества байт, которые размещают в оперативной памяти при выполнении программы. Байты объединяются в слова,слова в строки, строки в страницы, страницы в сегменты.

Для логической организации памяти важен порядок размещения байт в памяти. Принято располагать байты последовательно в памяти слева на право,увеличивая значения их адресов на единицу.

Разбиение виртуальной и физической памяти на страницы и сегменты дает возможность не только отображение виртуальных страниц на физическую память, но и описывать области линейного пространства и физической памяти с учетом их предназначения и прав доступа со стороны программ в так называемых дескрипторах, соответствующих каждому сегменту и каждой странице. Таким образом, реализуется механизм защиты при доступе в оперативную память.

И так уровень операционной системы имеет в своем распоряжении механизм разбиения виртуальной и физической памяти на страницы и сегменты, который он использует как инструмент для формирования структуры логической памяти системы. Но в оперативной памяти есть области, для которых используется только физическая адресация. В этих областях операционная система размещает обычно таблицы, используемые при преобразовании логических адресов памяти в физические. А. также различного рода служебную информацию, к которой разрешен доступ только с ее стороны. Эти области носят название постоянно – распределенных областей памяти, размер которых определяется архитектурой системы и операционными системами.

Существует плоская и многомерная модель логической памяти. Понятие плоской модели памяти связано с организацией оперативной памяти, предложенной фон-Нейманом, то есть с размещением команд и данных в общей области физической памяти, отдав право контроля за порядком их размещения самому программисту. Такая модель создавала определенные трудности и требовала от программиста дополнительных усилий при написании программы. Первой попыткой усовершенствовать плоскую модель памяти было внедрение механизма сегментации с целью разделения областей для команд и данных. Эта модель стала называться плоской защищенной,в которой области команд и данных по-прежнему могли размещаться в пределах размера физической памяти, но в разных ее местах, доступ к которым указывался через начальные адреса сегментов в дескрипторах,а размер ограничивался значением предела,указанных в них. Таким образом, был реализован простейший механизм защиты в памяти. Данная технология напоминала технологию модели памяти в гарвардской архитектуре,но примененную к общей физической памяти для команд и данных. В дальнейшем была внедрена плоская мультисегментная модель памяти, в которой и другие области, предназначенные не только для хранения команд и данных стали контролироваться механизмом защиты.

Модель памяти стала многомерной с внедрением виртуальной памяти, в которой логические адреса стали разбивать на несколько частей, каждая из которых подвергалась табличному преобразованию. Количество механизмов, участвующих в преобразовании определяет многомерность логической памяти. При страничном преобразовании адресов память становится одномерной,в которой преобразованию подвергается в простейшем варианте группа состоящая из старших разрядов логического адреса. Число этих разрядов в группе, а точнее степень 2, определяемая этим числом разрядов определяет количество виртуальных страниц в виртуальной памяти. Младшие разряды логического адреса преобразованию не подвергаются и определяют смещение, то есть месторасположение данных в физической странице. Так как количество страниц виртуальной памяти достаточно велико, то старшая группа разрядов логического адреса разбивается на несколько групп. В результате чего вместо одной таблицы страниц механизм преобразования использует несколько наборов таблиц меньшего размера. Число таблиц,входящих в набор будет определяться также степенью, определяемой числом разрядов адреса в группе, следующей за группой младших адресов логического адреса,а количество наборов будет равно количеству строк в каталоге станиц, размер которого будет зависеть от числа разрядов в группе, определяющей размер каталога. Выше описанная структура будет характерна в случае разбиения старшей группы разрядов логического адреса на три части.

Рассмотрим, какие аппаратные средства необходимы для преобразования логических адресов в физические.

Как было сказано выше, младшая группа разрядов логического адреса преобразованию не подвергается и представляет смещение, то есть местонахождение первого байта данных адреса в пределах физической страницы.

Поэтапный механизм преобразования логического адреса в физический(при разбиении старшей части логического адреса на две части) происходит в следующем порядке:

1.Производится обращение к строке в таблице, определяемой группой старших разрядов логического адреса интерпретируемой как каталог страниц. Таблица размещается в оперативной памяти. Адрес строки формируется путем сложения базового адреса, указывающего на начало расположения таблицы в памяти, и загруженного предварительно в системный регистр в процессоре. Вторым слагаемым является код в группе старших разрядов.

2. В результате из памяти считывается строка каталога, которая содержит атрибуты и базовый адрес таблицы страниц, соответствующей этой строке каталога.

3. Организуется цикл обращения в память к строке в таблице страниц. Адрес строки формируется путем сложения базового адреса, считанного из строки каталога и кода, соответствующего значению разрядов в группе, следующей за группой разрядов каталога.

4. Считанная строка из таблицы страниц содержит базовый адрес физической страницы в памяти, который поступает на сумматор,где путем сложения со значением группы младших разрядов логического адреса,представляющих смещение в области физической страницы, формируется физический адрес обращения к памяти.

И так в соответствии с вышеописанным алгоритмом аппаратными средствами поддержки преобразования логических адресов в физические являются:

1. Область оперативной памяти, выделяемой для хранения таблиц. Эта область является пространством, в котором не действует механизм преобразования.

2. Наличие управляющих регистров в процессоре, для хранения базового адреса,указывающего на расположение начальной таблицы в памяти.

3. Сумматор для выполнения операций сложения адресной арифметики.

4. Наличие буферных регистров или кэш памятей полностью ассоциативных для хранения результатов этапов преобразований логических адресов в физические.

Последние аппаратные средства необходимы для увеличения производительности работы системы, так как нет необходимости производить каждый раз полный цикл преобразований, когда обращение к памяти происходит в пределах одной физической страницы, координаты которой были вычислены при первом к ней обращении.

Внедрение дополнительного механизма сегментации при преобразовании логических адресов делает модель памяти двумерной. Механизм сегментации формирует линейное адресное пространство виртуальной памяти,которая в результате преобразования состоит из сегментов, в которых размещены коды программ и данные, определяя таким образом одно измерение логической памяти, второе измерение определяет механизм страничного преобразования, представляя память в виде набора виртуальных страниц.

Следует отметить, что идеология сегментации виртуальной памяти в вычислительных системах трактуется по- разному. Например, этап сегментации в процессе преобразования логических адресов в физические в системах фирмы IBM(IBM360,IBM370,сервера Zархитектуры) неотделим от этапа страничного преобразования, являясь предшествующим этапом перед этапом преобразования страниц также как в системахINTEL, он управляется только старшей частью адресов логического адреса, средняя часть адреса и младшая группа адресов участвует только при страничном преобразовании. Тем самым осуществляя неразделимую логическую связь между этапами, разбивая виртуальную память вначале на сегменты- области большого размера а потом сегменты на страницы.

В серверах Zархитектуры размер виртуального адреса был увеличен до64 разрядов, что дало возможность адресовать виртуальную память объемом до 16 эксабайт. Что же касается многомерности логической памяти в этих серверах, то аппаратная часть их дает возможность иметь до4х типов виртуальных независимых друг от друга адресных пространств с количеством пространств в двух из них по 64К и в двух оставшихся по 16 со своими табличными преобразованиями для каждого типа, которые используются для построения виртуальных логических образований- логических партиций,в каждой из которых функционирует своя операционная система. Каждый тип виртуальных адресов, связан с типом своей виртуальной памятью подвержен одному и тому же механизму преобразования со своими наборами таблиц. Следовательно, следуя понятиям и терминологии, рассмотренными выше, память в этих серверах можно считать набором из 4х типов одномерных виртуальных памятей с пятиэтапным преобразованием,имеющими пять видов областей: страница, сегмент, регион1, регион2, регион3.

Схема преобразования виртуальных адресов в серверах Zархитектуры

Организация подсистемы памяти в ПК

Запоминающие устройства (ЗУ) подсистемы памяти ПК можно выстроить в следующую иерархию (табл. 9.1):

Таблица 9.1. Иерархия подсистемы памяти ПК
Тип ЗУ 1985 г. 2000 г.
Время выборки Типичный объем Цена / байт Время выборки Типичный объем Цена / байт
Сверхоперативные ЗУ (регистры) 0,2 5 нс 16/32 бит $ 3 - 100 0,01 1 нс 32/64/128 бит $ 0,1 10
Быстродействующее буферное ЗУ (кэш) 20 100 нс 8Кб - 64Кб ~ $ 10 0,5 - 2 нс 32Кб 1Мб $ 0,1 - 0,5
Оперативное (основное) ЗУ ~ 0,5 мс 1Мб - 256Мб $ 0,02 1 2 нс 20 нс 128Мб - 4Гб $ 0,01 0,1
Внешние ЗУ (массовая память) 10 - 100 мс 1Мб - 1Гб $ 0,002 - 0,04 5 - 20 мс 1Гб - 0,5Тб $ 0,001 - 0,01

Регистры процессора составляют его контекст и хранят данные, используемые исполняющимися в конкретный момент командами процессора. Обращение к регистрам процессора происходит, как правило, по их мнемоническим обозначениям в командах процессора.

Кэш используется для согласования скорости работы ЦП и основной памяти. В вычислительных системах используют многоуровневый кэш: кэш I уровня (L1), кэш II уровня (L2) и т.д. В настольных системах обычно используется двухуровневый кэш, в серверных - трехуровневый. Кэш хранит команды или данные, которые с большой вероятностью в ближайшее время поступят процессору на обработку. Работа кэш-памяти прозрачна для программного обеспечения, поэтому кэш-память обычно программно недоступна.

Оперативная память хранит, как правило, функционально-законченные программные модули (ядро операционной системы, исполняющиеся программы и их библиотеки, драйверы используемых устройств и т.п.) и их данные, непосредственно участвующие в работе программ, а также используется для сохранения результатов вычислений или иной обработки данных перед пересылкой их во внешнее ЗУ, на устройство вывода данных или коммуникационные интерфейсы.

Каждой ячейке оперативной памяти присвоен уникальный адрес. Организационные методы распределения памяти предоставляют программистам возможность эффективного использования всей компьютерной системы. К таким методам относят сплошную ("плоскую") модель памяти и сегментированную модель памяти. При использовании сплошной модели (flat model) памяти программа оперирует единым непрерывным адресным пространством линейным адресным пространством, в котором ячейки памяти нумеруются последовательно и непрерывно от 0 до 2n-1, где n - разрядность ЦП по адресу. При использовании сегментированной модели (segmented model) для программы память представляется группой независимых адресных блоков, называемых сегментами. Для адресации байта памяти программа должна использовать логический адрес, состоящий из селектора сегмента и смещения. Селектор сегмента выбирает определенный сегмент, а смещение указывает на конкретную ячейку в адресном пространстве выбранного сегмента.



Организационные методы распределения памяти позволяют организовать вычислительную систему, в которой рабочее адресное пространство программы превышает размер фактически имеющейся в системе оперативной памяти, при этом недостаток оперативной памяти заполняется за счет внешней более медленной или более дешевой памяти (винчестер, флэш-память и т.п.) Такую концепцию называют виртуальной памятью. При этом линейное адресное пространство может быть отображено на пространство физических адресов либо непосредственно (линейный адрес есть физический адрес), либо при помощи механизма страничной трансляции. Во втором случае линейное адресное пространство делится на страницы одинакового размера, которые составляют виртуальную память. Страничная трансляция обеспечивает отображение требуемых страниц виртуальной памяти в физическое адресное пространство.

Кроме реализации системы виртуальной памяти внешние ЗУ используются для долговременного хранения программ и данных в виде файлов.

Кэш-память

Кэш-память представляет собой быстродействующее ЗУ, размещенное на одном кристалле с ЦП или внешнее по отношению к ЦП. Кэш служит высокоскоростным буфером между ЦП и относительно медленной основной памятью. Идея кэш-памяти основана на прогнозировании наиболее вероятных обращений ЦП к оперативной памяти. В основу такого подхода положен принцип временной и пространственной локальности программы.



Если ЦП обратился к какому-либо объекту оперативной памяти, с высокой долей вероятности ЦП вскоре снова обратится к этому объекту. Примером этой ситуации может быть код или данные в циклах. Эта концепция описывается принципом временной локальности, в соответствии с которым часто используемые объекты оперативной памяти должны быть "ближе" к ЦП (в кэше).

Для согласования содержимого кэш-памяти и оперативной памяти используют три метода записи:

  • Сквозная запись (write through) - одновременно с кэш-памятью обновляется оперативная память.
  • Буферизованная сквозная запись (buffered write through) - информация задерживается в кэш-буфере перед записью в оперативную память и переписывается в оперативную память в те циклы, когда ЦП к ней не обращается.
  • Обратная запись (write back) - используется бит изменения в поле тега, и строка переписывается в оперативную память только в том случае, если бит изменения равен 1.

Как правило, все методы записи, кроме сквозной, позволяют для увеличения производительности откладывать и группировать операции записи в оперативную память.

В структуре кэш-памяти выделяют два типа блоков данных:

  • память отображения данных (собственно сами данные, дублированные из оперативной памяти);
  • память тегов (признаки, указывающие на расположение кэшированных данных в оперативной памяти).

Пространство памяти отображения данных в кэше разбивается на строки - блоки фиксированной длины (например, 32, 64 или 128 байт). Каждая строка кэша может содержать непрерывный выровненный блок байт из оперативной памяти. Какой именно блок оперативной памяти отображен на данную строку кэша, определяется тегом строки и алгоритмом отображения. По алгоритмам отображения оперативной памяти в кэш выделяют три типа кэш-памяти:

  • полностью ассоциативный кэш;
  • кэш прямого отображения;
  • множественный ассоциативный кэш.

Для полностью ассоциативного кэша характерно, что кэш-контроллер может поместить любой блок оперативной памяти в любую строку кэш-памяти (рис. 9.1). В этом случае физический адрес разбивается на две части: смещение в блоке (строке кэша) и номер блока. При помещении блока в кэш номер блока сохраняется в теге соответствующей строки. Когда ЦП обращается к кэшу за необходимым блоком, кэш-промах будет обнаружен только после сравнения тегов всех строк с номером блока.

Одно из основных достоинств данного способа отображения - хорошая утилизация оперативной памяти, т.к. нет ограничений на то, какой блок может быть отображен на ту или иную строку кэш-памяти. К недостаткам следует отнести сложную аппаратную реализацию этого способа, требующую большого количества схемотехники (в основном компараторов), что приводит к увеличению времени доступа к такому кэшу и увеличению его стоимости.

Увеличить изображение
Рис. 9.1. Полностью ассоциативный кэш 8х8 для 10-битного адреса

Альтернативный способ отображения оперативной памяти в кэш - это кэш прямого отображения (или одновходовый ассоциативный кэш). В этом случае адрес памяти (номер блока) однозначно определяет строку кэша, в которую будет помещен данный блок. Физический адрес разбивается на три части: смещение в блоке (строке кэша), номер строки кэша и тег. Тот или иной блок будет всегда помещаться в строго определенную строку кэша, при необходимости заменяя собой хранящийся там другой блок. Когда ЦП обращается к кэшу за необходимым блоком, для определения удачного обращения или кэш-промаха достаточно проверить тег лишь одной строки.

Очевидными преимуществами данного алгоритма являются простота и дешевизна реализации. К недостаткам следует отнести низкую эффективность такого кэша из-за вероятных частых перезагрузок строк. Например, при обращении к каждой 64-й ячейке памяти в системе на рис. 9.2 кэш-контроллер будет вынужден постоянно перегружать одну и ту же строку кэш-памяти, совершенно не задействовав остальные.

Увеличить изображение
Рис. 9.2. Кэш прямого отображения 8х8 для 10-битного адреса

Несмотря на очевидные недостатки, данная технология нашла успешное применение, например, в МП Motorola MC68020, для организации кэша инструкций первого уровня (рис. 9.3). В данном микропроцессоре реализован кэш прямого отображения из 64 строк по 4 байт. Тег строки, кроме 24 бит, задающих адрес кэшированного блока, содержит бит значимости, определяющий действительность строки (если бит значимости 0, данная строка считается недействительной и не вызовет кэш-попадания). Обращения к данным не кэшируются.

Увеличить изображение
Рис. 9.3. Схема организации кэш-памяти в МП Motorola MC68020

Компромиссным вариантом между первыми двумя алгоритмами является множественный ассоциативный кэш или частично-ассоциативный кэш (рис. 9.4). При этом способе организации кэш-памяти строки объединяются в группы, в которые могут входить 2, 4, : строк. В соответствии с количеством строк в таких группах различают 2-входовый, 4-входовый и т.п. ассоциативный кэш. При обращении к памяти физический адрес разбивается на три части: смещение в блоке (строке кэша), номер группы (набора) и тег. Блок памяти, адрес которого соответствует определенной группе, может быть размещен в любой строке этой группы, и в теге строки размещается соответствующее значение. Очевидно, что в рамках выбранной группы соблюдается принцип ассоциативности. С другой стороны, тот или иной блок может попасть только в строго определенную группу, что перекликается с принципом организации кэша прямого отображения. Для того чтобы процессор смог идентифицировать кэш-промах, ему надо будет проверить теги лишь одной группы (2/4/8/: строк).

Увеличить изображение
Рис. 9.4. Двухвходовый ассоциативный кэш 8х8 для 10-битного адреса

Данный алгоритм отображения сочетает достоинства как полностью ассоциативного кэша (хорошая утилизация памяти, высокая скорость), так и кэша прямого доступа (простота и дешевизна), лишь незначительно уступая по этим характеристикам исходным алгоритмам. Именно поэтому множественный ассоциативный кэш наиболее широко распространен (табл. 9.2).

Таблица 9.2. Характеристики подсистемы кэш-памяти у ЦП IA-32
Intel486 Pentium Pentium MMX P6 Pentium 4
L1 кэш команд
Тип 4-вх. ассоц. 2-вх. ассоц. 4-вх. ассоц. 4-вх. ассоц. 8-вх. ассоц.
Размер строки, байт -
Общий объем, Кбайт 8/16 8/16 12Кmops
L1 кэш данных
Тип Общий с кэш инструкций 2-вх. ассоц. 4-вх. ассоц. 2/4-вх. ассоц. 4-вх. ассоц.
Размер строки, байт
Общий объем, Кбайт 8/16
L2 кэш
Тип Внешний внешний 4-вх. ассоц. 4-вх. ассоц. 8-вх. ассоц.
Размер строки, байт
Общий объем, Кбайт 256/512 128-2048 256/512

Примечания: В Intel-486 используется единый кэш команд и данных первого уровня. В Pentium Pro L1 кэш данных - 8 Кбайт 2-входовый ассоциативный, в остальных моделях P6 - 16 Кбайт 4-входовый ассоциативный. В Pentium 4 вместо L1 кэша команд используется L1 кэш микроопераций (кэш трассы).

Для организации кэш-памяти можно использовать принстонскую архитектуру (смешанный кэш для команд и данных, например, в Intel-486). Это очевидное (и неизбежное для фон-неймановских систем с внешней по отношению к ЦП кэш-памятью) решение не всегда бывает самым эффективным. Разделение кэш-памяти на кэш команд и кэш данных (кэш гарвардской архитектуры) позволяет повысить эффективность работы кэша по следующим соображениям:

  • Многие современные процессоры имеют конвейерную архитектуру, при которой блоки конвейера работают параллельно. Таким образом, выборка команды и доступ к данным команды осуществляется на разных этапах конвейера, а использование раздельной кэш-памяти позволяет выполнять эти операции параллельно.
  • Кэш команд может быть реализован только для чтения, следовательно, не требует реализации никаких алгоритмов обратной записи, что делает этот кэш проще, дешевле и быстрее.

Именно поэтому все последние модели IA-32, начиная с Pentium, для организации кэш-памяти первого уровня используют гарвардскую архитектуру.

Критерием эффективной работы кэша можно считать уменьшение среднего времени доступа к памяти по сравнению с системой без кэш-памяти. В таком случае среднее время доступа можно оценить следующим образом:

T ср = (T hit x R hit) + (T miss x (1 R hit))

где T hit - время доступа к кэш-памяти в случае попадания (включает время на идентификацию промаха или попадания), T miss - время, необходимое на загрузку блока из основной памяти в строку кэша в случае кэш-промаха и последующую доставку запрошенных данных в процессор, R hit - частота попаданий.

Очевидно, что чем ближе значение R hit к 1, тем ближе значение T ср к T hit . Частота попаданий определяется в основном архитектурой кэш-памяти и ее объемом. Влияние наличия и отсутствия кэш-памяти и ее объема на рост производительности ЦП показано в табл. 9.3.

Модули памяти характеризуются такими параметрами, как объем (16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота (100 или 133 МГц), время доступа к данным (6 или 7 нс) и число контактов (72, 168 или 184).

Модули DIP. Микросхемы DRAM упаковываются в так называемый DIP-корпус, при этом DIP обозначает Dual In-line Package (корпус с двухрядным расположением выводов). Этот термин относится к корпусам памяти, у которых выводы (Pins) расположены по бокам (напоминают жука) - рис. 3.48, а. Сам кристалл, на котором размещены ячейки памяти, существенно меньше, чем корпус. Данная конструкция корпуса обусловлена такими требованиями, как удобство печатного монтажа и установки микросхемы в панельки на системной плате, а также соблюдение температурного режима работы элементов.

Большинство модулей DIP имеют интервалы между выводами в ряду 2,54 мм (0,1"), а расстояние между рядами - 7,62 мм (0,3" - «Skinny DIP», «Тощий DIP») или 15,24 мм (0,6"). Типичное число контактов равно 8 или любому другому четному числу от 14 до 24 (реже -28) для корпусов на 0,3" и 24, 28, 32 или 40 (реже 36, 48 или 52) для корпусов на 0,6". На территории бывшего СССР используются аналогичные корпуса, но с размерами, выдержанными в метрической системе мер (например, интервал выводов 2,5 мм вместо 2,54 мм/0, Г).

Известны различные варианты корпусов DIP, в основном различающиеся материалом изготовления:

  • керамические (Ceramic Dual In-line Package - CERDIP);
  • пластмассовые (Plastic Dual In-line Package - PDIP);
  • пластмассовые уплотненные (Shrink Plastic Dual In-line Package - SPDIP) - уплотненная версия PDIP с интервалом выводов 1,778 мм (0,07").

Важнейшими параметрами микросхем DRAM являются емкость и организация памяти. Элементы DRAM в виде отдельных микросхем обычно устанавливались на старых материнских платах. В настоящее время эти микросхемы используются в качестве составных элементов модулей памяти, таких как SIP-, ZIP-и SIMM-модули.

Информация о микросхеме в ее обозначении состоит, как правило, из нескольких полей. Первое поле содержит информацию о производителе и типе отбраковки при изготовлении микросхемы, следующее характеризует емкость, а дальнейшее - материал, из которого изготовлен корпус, и время доступа.

Например, для микросхем фирмы Mostek первые две буквы МК являются обозначением фирмы, МКВ означает, что данная микросхема фирмы Mostek отбракована согласно военному стандарту (MIL STD-833), a MKI - что микросхема прошла отбраковку в соответствии с промышленным диапазоном температур. Цифра 4 говорит о том, что микросхема является элементом DRAM. Следующая за ней цифра обозначает количество инфор-

Рис. 3.48. Внешний вид модулей памяти: а - корпус DIP-14; б - модуль SIP; в - модуль ZIP; г - разъем ZIP; д - SIMM на 72 контакта; е -DDR2 (1 Гбайт, 533 МГц) с радиатором (184 контакта и один ключ); ж - DDR SO-DIMM (РС2700, 200 контактов); з - RDRAM-модуль со

встроенным радиатором

мационных разрядов: 1 - один разряд, 4 - четыре разряда. Группа цифр, следующая далее, обозначает количество информационных разрядов в килобитах (64 - 64 Кбит, 256 - 256 Кбит, 1000 - 1 Мбит). Далее буквой указывается тип корпуса (например, Р - пластмассовый, хотя тип может быть и не указан). Через дефис указывается время доступа в наносекундах. Таким образом, по обозначению МКВ44256-70 можно легко определить, что это микросхема фирмы Mostek, прошедшая отбраковку согласно военному стандарту, имеет емкость 4-го разряда по 256 Кбит каждый и время доступа 70 нс.

SIP-модули. Микросхемы DRAM довольно легко и просто устанавливать в ПК, однако они занимают много места. С целью уменьшения размеров компонентов ПК, в том числе и элементов оперативной памяти, был разработан ряд конструктивных решений, приведших к тому, что каждый элемент памяти больше не устанавливался в отдельную панель, а совместимые элементы DRAM объединены в один модуль, выполненный на небольшой печатной плате.

Технология, реализующая такую конструкцию элементов памяти, называется SMT (Surface Mounting Technology), дословно переводимая как «технология поверхностного монтажа». Благодаря ей совместимые элементы DRAM были установлены на одной плате, что, в первую очередь, означало экономию места.

В качестве реализации технологии SMT можно назвать так называемые SIP-модули с однорядным расположением выводов (Single In-line Package - SIP). SIP-модули представляют собой небольшую плату с установленными на ней совместимыми чипами DRAM (см. рис. 3.48). Такая плата имеет 30 выводов, размеры ее в длину около 8 см и в высоту около 1,7 см.

SIP-модули устанавливаются в соответствующие разъемы на системной плате. Однако при установке и извлечении таких модулей тонкие штырьки выводов часто обламываются, и контакт между штырьком и разъемом ненадежен. Это привело к дальнейшему развитию модулей памяти и появлению SIMM-модулей.

ZIP (Zig-zag In-line Package) - недолго просуществовавшая технология интегральных схем, в частности, чипов DRAM. Она была разработана для замены DIP. Интегральная схема ZIP заключается в пластиковый корпус, обычно размером 3 х 30 х 10 мм. Выводы устройства расположены в 2 ряда на одной из сторон корпуса. Эти ряды находятся на расстоянии 1,27 мм (0,05") друг от друга в шахматном порядке, что дает возможность их более компактного размещения, чем обычная прямоугольная решетка (рис. 3.48, в, г). Корпуса схем при этом могут располагаться на плате более плотно, нежели чем при схемотехнике DIP, при том же размере. ZIP были в дальнейшем вытеснены такими конфигурациями, как TSOP (thin small-outline packages), используемых в SIMM (single-in-line memory modules) и DIMM (dual-in-line memory modules).

SIMM-модули. Когда речь идет о SIMM-модуле, имеют в виду плату, которая по своим размерам примерно соответствует SIP-модулю. Различие, прежде всего, состоит в конструкции контактов. В отличие от SIP-модуля выводы для SIMM-модуля заменены так называемыми контактами типа PAD (вилка). Эти контакты выполнены печатным способом и находятся на одном краю платы. Именно этим краем SIMM-модули устанавливаются в специальные слоты на системной плате (рис. 3.48, d). Благодаря такой конструкции SIMM-модулей существенно повышается надежность электрического контакта в разъеме и механическая прочность модуля в целом, тем более что все контакты изготовлены из высококачественного материала и позолочены.

Отказы в работе оперативной памяти чаще всего происходят не из-за повреждения SIMM-модулей, а, скорее, из-за некачественной обработки контактов разъемов на системной плате.

Кроме того, удобная конструкция SIMM-модулей позволяет пользователям самостоятельно менять и добавлять элементы памяти, не опасаясь повредить выводы.

SIMM-модули являются стандартом в современных вычислительных системах. SIMM-модули, оснащенные DRAM 41256, сегодня применяются относительно редко. Чаще SIMM-модули оборудованы микросхемами памяти общей емкостью 8, 16 и 32 Мбит. В дальнейшем на рынке появились SIMM-модули, имеющие емкость 120 Мбит и более.

В PC с CPU 80386 и ранних моделях с CPU 80486 использовались 30-контактные SIMM-модули памяти (DRAM), и число слотов на системной плате колебалось от 4 до 8. В настоящее время найти в продаже подобные модули весьма не просто. В более поздних моделях PC с CPU 80486 и Pentium стали использоваться 72-контактные SIMM-модули памяти (FPM DRAM).

DIMM-модули. В дальнейшем на многих системных платах появились слоты для 168-контактных модулей памяти DIMM (Dual In-line Memory Module). Модули DIMM обладают внутренней архитектурой, схожей с 72-контактными SIMM-модулями, но благодаря более широкой шине обеспечивают повышенную производительность подсистемы «CPU-RAM».

Для правильного позиционирования DIMM-модулей при установке в слоты на системной плате в их конструкции предусмотрены два ключа:

  • первый ключ расположен между контактами 10 и 11 и служит для определения типа памяти модуля (FPM DRAM или SDRAM);
  • второй ключ расположен между контактами 40 и 41 и служит для определения напряжения питания модуля (5 или 3,3 В).

DIMM-модули поддерживают, например, материнские платы на Chipset 82430VX, 82440FX, 83450KX/GX, 82430ТХ.

SO-DIMM (Small Outline Dual In-Line Memory Module) представляет собой тип интегральных схем оперативной памяти компьютера (рис. 3.48, ж).

SO-DIMM является малогабаритной альтернативой для DIMM и обычно занимают около половины пространства, требуемого для обычных модулей DIMM. В результате SO-DIMM в основном используются в таких устройствах, как ноутбуки, небольшие настольные ПК (с платами типа Mini-ITX), высококачественные принтеры и сетевое оборудование (например, маршрутизаторы).

Модули SO-DIMM могут иметь 72, 100, 144 или 200 контактов, поддерживая передачу данных, соответственно, по 32 бита (100) и 64 бита (144 и 200). Обычные DIMM имеют по 168, 184 или 240 и все поддерживают 64-битовую передачу данных.

Различные типы SO-DIMM распознаются по размещению «ключей» - модули на 100 контактов имеют два ключа, 144-контактный SO-DIMM имеет один ключ близко к центру корпуса, 200-контактный SO-DIMM - один ключ ближе к краю корпуса.

SO-DIMM примерно соответствуют (или меньше чем) по мощности DIMM, и обе технологии SO-DIMM и DIMM обеспечивают примерно равные скорости (тактовая частота, например, 400 МГц для РС3200 и латентность CAS величиной 2,0, 2,5 и 3,0) и емкость (512 Мбайт, 1 Гбайт и пр.). Более современные модули DDR2 SO-DIMM имеют частоту до 800 МГц РС6400 и предполагается, что достигнут частоты 1066 МГц РС8500.

RIMM. С появлением Direct RDRAM (DRDRAM) в 1999 г. появляется модуль RIMM (рис. 3.49) (название - не акроним, а торговая марка Rambus Inc). Разъемы RIMM имеют типоразмеры, подобные DIMM, и могут устанавливаться в пределах той же

Рис. 3.49.

самой области системной платы, как и DIMM. Они имеют 184 штырька по сравнению с 168 для DIMM, но используют ту же спецификацию гнезда, как и стандарт DIMM на 100 МГц. BIOS ПК способен определить, какая оперативная память установлена, так что SDRAM-модули на 100 МГц должны работать в RIMM-совместимой системе. Существуют также компактные модели памяти SO-RIMM, аналогичные SO-DIMM.

Главные элементы к подсистеме памяти Rambus включают основное устройство, которое содержит Rambus ASIC Cell (RAC) и контроллер памяти (Rambus Memory Controller RMC), тактовый генератор (Direct Rambus Clock Generator DRCG), разъемы RIMM, модули памяти RIММ и модули непрерывности RIMM, а также подсистему «последовательное устройство обнаружения присутствия» (Serial Presence Detect SPD ROM).

В конечном итоге, технологии DDR, развиваясь и становясь все дешевле, практически вытеснили RDRAM - в интервале 2002-2005 гг. рыночная доля RDRAM не превышала 5 %.

FB-DIMM (Fully Buffered DIMM, полностью буферизованный DIMM) - технология, предназначенная для повышения надежности, быстродействия и емкости систем ОП. В обычных конструкциях ОП линии данных, идущие от контроллера памяти, соединяются со всеми DIMM-модулями. При возрастании электрической нагрузки (увеличение числа модулей или же разрядности памяти), а также с повышением частоты доступа проходящие сигналы начинают искажаться, что ограничивает эффективность системы в целом.

Архитектура Fully Buffered DIMM предусматривает промежуточный буфер (Advanced Memory Buffer - AM В), устанавливаемый между контроллером и модулем памяти (рис. 3.50). В отличие от параллельной шинной архитектуры для традиционных

Разъем DDR2 с уникальным ключом

До 8 модулей DIMM

«Южный путь» (10 бит)

Контроллер

Рис. 3.50. Архитектура памяти FB-DIMM

DRAM, FB-DIMM имеет последовательный интерфейс между контроллером и AM В. Это позволяет повысить разрядность памяти без увеличения количества линий контроллера памяти.

Контроллер не передает сигнал непосредственно на модуль памяти, а действует через буфер, который восстанавливает форму сигнала и передает его дальше. Кроме того, AM В может осуществлять коррекцию ошибок, разгружая от этой функции процессор и контроллер памяти. Это сопровождается, однако, повышением латентности ОП.

Существует стандарт (протокол JESD82-20), определяющий интерфейс АМВ с памятью DDR2. Канал FB-DIMM состоит из 14 битовых линий «Северного пути» («northbound»), по которым данные передаются из памяти на процессор, и 10 линий «Южного пути» («southbound»), передающих команды и данные из процессора.

Каждый бит передается на частоте, в 12 раз большей, чем базовая частота памяти (в 6 раз, если используется удвоенная скорость, DDR - DDR3). Например, для чипа DDR2-667 DRAM канал будет работать на частоте 667 х 12/2 =4000 МГц. Каждые 12 циклов образуют кадр: 168 бит «Северного пути» (144 бита данных, передаваемых 72-битовой DDR SDRAM плюс 24 бита для CRC-коррекции) и 120 бит «Южного» (98 полезных бит и 22 CRC-бита). Из 98 бит здесь 2 задают тип кадра, 24 - команда; в оставшихся битах могут содержаться (в зависимости от типа кадра) либо 72 бита записываемых данных, либо две или более 24-битовых команд, либо одна команда или более плюс 36 бит записываемых данных.

Поскольку записываемые данные подаются медленнее, чем это необходимо для ОП DDR, они накапливаются в AM В, а затем записываются в одном пакете (обычно по четыре кадра данных).

Команды соответствуют стандартным циклам доступа DRAM, например, выбор строки (/RAS), предвыборка, регенерация и пр. Команды чтения и записи содержат только адреса столбцов (/CAS) массива памяти. Все команды содержат 3-разрядные адреса FB-DIMM, что позволяет подключать до 8 модулей FB-DIMM на 1 канал.

ОРГАНИЗАЦИЯ ПАМЯТИ В ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ

Назначение, основные параметры и

Классификация видов памяти

Устройства памяти (запоминающие устройства) ВМ предназначены для записи, хранения и считывания информации, представленной в цифровой форме /2,3/. Устройства памяти, как и процессоры, оперируют с двумя видами информации – программами и данными, поэтому характеристики памяти во многом определяют производительность и функциональные возможности ВМ.

Устройства памяти работают в двух режимах – обращения к памяти и хранения . В режиме обращения в память осуществляется запись информации или производится чтение информации из памяти. Если к памяти не обращаются, она переходит режим хранения.

Основными параметрами, характеризующими устройства памяти, являются информационная емкость (объем), быстродействие, энергопотребление и стоимость /2,5,8/.

Информационная емкость (объем) устройства памяти определяется максимальным количеством хранимой информации и измеряется в байтах, Кбайтах, Мбайтах, Гбайтах и Тбайтах.

1 Кбайт = 2 10 байт; 1Мбайт = 2 20 байт; 1Гбайт = 2 30 байт и 1Тбайт = 2 40 байт.

Быстродействие памяти характеризуется следующими основными параметрами:

временем выборки (доступа) t В, определяемым временным интервалом между моментами подачи сигнала выборки (начала цикла чтения) и получением считанных данных на выходе памяти;

длительностью цикла обращения t Ц , который определяется минимально допустимым временным интервалом между следующими друг за другом обращениями к памяти. Учитывая, что под обращением к памяти понимается запись или чтение, иногда разделяют длительность цикла чтения t Ц.ЧТ . и длительность цикла записи t Ц.ЗП. для видов памяти, у которых эти длительности циклов различны, т.е. t Ц.ЧТ. ≠ t Ц.ЗП .

В общем случае цикл обращения состоит из фазы выборки (доступа) и фазы регенерации (восстановления) памяти, поэтому t Ц > t В.

Быстродействие памяти можно также характеризовать скоростью передачи записываемых или считываемых данных и измерять в Мбайтах/сек.

Энергопотребление для многих видов памяти в режиме обращения существенно выше, чем в режиме хранения. Энергонезависимая память в режиме хранения вообще не потребляет электроэнергию. Но ряд видов памяти, например, электронная динамическая, в режиме хранения требуют циклов регенерации, поэтому энергопотребление в этом режиме сопоставимо с энергопотреблением в режиме обращения.

Для сравнения разных видов памяти удобно использовать приведенные к одной ячейке (т.е. удельные) энергопотребление и стоимость устройств памяти.

Важным параметром памяти является также разрядность шины данных памяти, определяющая количество байт, с которыми операция чтения или записи может выполняться одновременно.

Устройства памяти ВМ можно классифицировать по различным признакам: по физическому принципу работы, по функциональному назначению, по способу организации, необходимости электропитания в режиме хранения и т.д.

По физическому принципу работы память классифицируется на электронную, магнитную, оптическую, магнитно – оптическую.

Электронная память выполняется на полупроводниковых элементах и реализуется в виде БИС. Электронная память разделяется на статическую и динамическую.

В БИС статической памяти в качестве элементарных ячеек памяти применяются статические триггеры на биполярных или полевых транзисторах. Как известно, число устойчивых состояний триггера равно двум, что позволяет использовать его для хранения единицы информации – бита. Ячейки памяти для хранения байт и слов используют соответственно 8 и 16 триггеров.

В БИС динамической памяти в качестве элементарных ячеек памяти применяются электрические конденсаторы. Наличие заряда соответствует хранению логической «1», отсутствие заряда – хранению логического «0». В качестве запоминающих конденсаторов используются либо межэлектродные емкости МОП транзисторов, либо специально созданные в кристалле БИС МОП конденсаторы. Фрагмент структурной схемы динамической памяти, содержащий две ячейки 1 и 2, изображен на рис.6.1.

Каждая элементарная ячейка памяти содержит запоминающий МОП конденсатор С (десятые доли пФ) и транзисторный ключ Т, подключающий этот конденсатор к шине данных. Затвор транзисторного МОП – ключа соединен с соответствующим выходом дешифратора адреса. При выборе ячейки ключ Т открывается и подключает конденсатор С к шине данных. Далее, в зависимости от вида команды: запись (WR) или чтение (RD) - через соответствующий усилитель производится запись входных данных (DI) или чтение выходных данных (DO).

Динамическая память по сравнению со статической существенно проще, дешевле и обеспечивает очень высокую степень интеграции, т.е. более высокую удельную емкость. Но по сравнению со статической динамическая память обладает меньшим быстродействием и требует периодической регенерации (восстановления) информации в элементарных ячейках. Другими словами, необходимо периодически восстанавливать заряд на запоминающих конденсаторах С, которые с течением времени саморазряжаются, т.е. «теряют» информацию. Для этого через каждые несколько миллисекунд (mсек) производятчтение информации из ячеек памяти и затем повторную запись информации, что позволяет восстанавливать заряд на запоминающих конденсаторах C. Необходимость организации периодических циклов регенерации (Refresh Cycles) несколько усложняет управление динамической памятью.

Для типовых модулей электронной памяти время выборки t В составляет единицы – десятки наносекунд (nсек ), а информационная емкость – десятки – сотни Мбайт.

Статическая и динамическая электронная память является энергозависимой , т.е. при отключении электропитания информация в ячейках не сохраняется. Существует также энергонезависимая электронная память – постоянные запоминающие устройства (ПЗУ), информация из которых в процессе работы ВМ может только считываться. Ячейки памяти ПЗУ будут рассмотрены ниже.

Магнитная память основана на наличии у ряда магнитных материалов (например, окиси железа) двух устойчивых состояний остаточного намагничивания противоположного знака. Такие магнитные материалы характеризуются прямоугольной петлей гистерезиса B = f(H) , и из них выполняется рабочий магнитный слой, наносимый на поверхность различных подвижных носителей – магнитных дисков. Для записи и чтения информации используются магнитные головки, представляющие собой миниатюрные катушки индуктивности, намотанные на магнитном сердечнике с зазором. При записи магнитная головка намагничивает участок магнитного слоя, проходящий под рабочим зазором, в направлении, определяемом направлением протекающего тока. При считывании намагниченные участки поверхности проходят около индуктивной головки считывания и наводят в ней импульсы э.д.с. Устройства памяти, использующие этот принцип, имеют очень низкую удельную стоимость хранения информации, являются энергонезависимыми, но, являясь электромеханическими, по быстродействию, надежности и энергопотреблению существенно уступают электронной памяти. Для НЖМД скорость передачи данных достигает десятков Мбайт/сек, а информационная емкость – сотен Гбайт.



В оптической памяти для хранения информации используется изменение оптических свойств (в основном, степени отражения) поверхности носителя. Оптический носитель выполняется в виде диска (Compact Disk - CD), отражающий слой (металлическое напыление) которого покрыт слоем органического красителя. При записи луч лазера модулируется потоком записываемых бит и в определенных местах дорожки выжигает ямки в слое красителя. За счет разницы коэффициента отражения ямок и невыжженных участков поверхности при считывании возникает модуляция яркости отраженного луча, которая кодирует считываемую с CD информацию. Производятся различные типы оптических CD дисков: CD-ROM (Read Only Memory) – позволяющие только считывать записанную матричным способом информацию, CD-R (Recordable) – допускающие хотя бы однократную запись на диск и многократное считывание, CD-RW (ReWritable) – позволяющие многократную перезапись на диск (и конечно же, считывание). Оптические диски дешевы и имеют значительную (до одного Гбайта) информационную емкость, являются энергонезависимыми и легко сменяемыми, но по быстродействию, надежности и энергопотреблению, как и магнитные диски, существенно уступают электронной памяти.

По функциональному назначению устройства памяти можно классифицировать на сверхоперативные запоминающие устройства (СОЗУ), оперативные запоминающие устройства (ОЗУ), постоянные запоминающие устройства (ПЗУ) и внешние запоминающие устройства (ВЗУ).

ОЗУ предназначено для хранения программ (системных, прикладных) и данных, непосредственно используемых ЦП в текущее время. Длительности циклов чтения и записи для оперативной памяти, как правило, одинаковы. Обычно в качестве ОЗУ применяется динамическая память объемом до единиц Гбайт в зависимости от назначения и области применения МС.

СОЗУ или кэш-память (Cache Memory) – это небольшого объема быстродействующая память, у которой длительность цикла обращения t Ц. меньше длительности машинного цикла процессора. Поэтому при обращении к кэш-памяти не требуется вводить такты ожидания процессора в машинные циклы обращения к памяти. Кэш-память является буферной памятью между ОЗУ и ЦП и выполняется на базе статической памяти. Кэш хранит копии блоков (страниц) программ и данных тех областей ОЗУ, к которым происходили последние обращения, а также каталог – список их текущего соответствия областям ОЗУ. При каждом обращении к оперативной памяти контроллер кэш-памяти по каталогу проверяет, есть ли действительная копия затребованного блока (страницы) в кэш. Если копия там есть, то это случай кэш-попадания , и обращение за данными или кодом происходит только к кэш-памяти. Если действительной копии там нет, то это случай кэш-промаха , и в кэш записывается требуемый блок (страница) из ОЗУ, причем запись производится на место предварительно удаленного из кэш в ОЗУ наименее актуального блока (страницы), т.е. блока информации, число обращений к которому было наименьшим. За счет присущих программам и данным таких фундаментальных свойств, как пространственная и временная локальности /2,7,13/ число кэш-попаданий во много раз превышает число кэш-промахов даже при небольших (единицы – десятки Кбайт) объемах кэш памяти. Поэтому использование кэш-памяти значительно повышает производительность ВМ. Обычно кэш реализуется по трехуровневой схеме: первичный кэш (L1 Cache), объемом десятки Кбайт, и вторичный кэш (L2 Cache), объемом сотни Кбайт, размещается в кристалле МП, кэш третьего уровня (L3 Cache), единицы Мбайт устанавливают на системной плате или в корпусе МП.

ПЗУ – это электронная энергонезависимая память, которая применяется для хранения неизменяемой или редко изменяемой в течении времени эксплуатации ВМ информации: системного ПО (BIOS), прикладного ПО для встраиваемых и бортовых ВМ, наборов таблиц, параметров конфигурации различных систем и т.п. Основным режимом работы ПЗУ является чтение, что и обуславливает другое общее название такой памяти ROM (Read Only Memory). Запись информации в ПЗУ, называемая программированием, обычно существенно сложнее, требует больших затрат времени и энергии, чем чтение.

ВЗУ предназначены для энергонезависимого хранения больших объемов определенным образом структурированной информации: файлов, баз данных, архивов. Характерной особенностью внешней памяти является то, что ее устройства оперируют блоками информации, а не байтами или словами, как это позволяет оперативная память. Кроме того, процессор может осуществлять доступ к ВЗУ только через оперативную память. В качестве ВЗУ обычно используется дисковые (НЖМД, CD) накопители, позволяющие хранить сотни Гбайт информации.

Буферная электронная память включается в состав контроллеров различных внешних устройств, решающих задачи отображения и ввода информации, задачи коммуникации, преобразования сигналов и т.п. Наличие буферной памяти позволяет согласовать существенно различные скорости передачи информации системной шины и внешних устройств, сократить время использования каждым из внешних устройств системной шины и увеличить производительность ВМ.

Способ организации памяти определяется методом размещения и поиска информации в ЗУ. По этому признаку различают адресную, ассоциативную и стековую организацию памяти.

В адресной памяти для обращения к ячейкам памяти используются их адреса , под которыми понимаются коды номеров ячеек памяти. Адресная организация памяти позволяет обращаться к ячейкам памяти по их адресам в произвольном порядке, причем длительность цикла обращения является одинаковой для всех ячеек независимо от адреса. Поэтому для названия такой память также используется термин «запоминающие устройства с произвольной выборкой (ЗУПВ)» или RAM (Random Access Memory). Адресную организацию памяти имеют, например, ОЗУ и ПЗУ.

В ассоциативной памяти (АЗУ) поиск информации производится не по адресам ячеек памяти, а по их содержимому или его части. В общем случае запрос к ассоциативной памяти осуществляется заданием перечня разрядов, по которым следует производить поиск ячейки памяти, и заданием содержания выделенных разрядов. Перечень разрядов для поиска задается в регистре-маске. Этот регистр имеет такую же разрядность, как и ячейка памяти АЗУ, и содержит единицы только в тех разрядах, по которым ведется поиск. В регистре-контексте задается содержание этих разрядов, и его разрядность равна разрядности регистра-маски.

Если ячейка с заданной комбинацией нулей и единиц находится, АЗУ формирует положительный ответ с указанием адреса найденной ячейки. Далее адрес передается в дешифратор адреса, и все содержимое такой ячейки можно считать или записать в нее новое содержимое. В противном случае АЗУ формирует отрицательный ответ на запрос.

Поиск информации по контексту в АЗУ осуществляется одновременно по всем ячейкам памяти, поэтому АЗУ во много раз быстрее ЗУПВ, но и стоят значительно дороже. В современных вычислительных системах АЗУ применяются, например, в составе кэш-памяти.

Стековая память (Stack), так же как и ассоциативная является безадресной. Стек можно рассматривать как совокупность ячеек, образующих одномерный массив, в котором соседние ячейки связаны друг с другом разрядными цепями передачи слов. В этой памяти запись и чтение производятся по правилу «последнее записанное считывается первым» или «Last Input First Output (LIFO)». Поэтому стек называют «магазинной» памятью с обратным порядком считывания. Обычно стек организуют в оперативной памяти. Количество слов в стеке определяется регистром-указателем стека SP, а запись в стек и чтение из него производится соответственно командами PUSH и POP. Широкое применение стековая память находит, как уже было рассмотрено выше, при обработке прерываний и вызове подпрограмм.

Наряду со стековой памятью большое распространение получила «магазинная» память с прямым порядком считывания, т.е. «первое записанное считывается первым» или «First Input First Output (FIFO)». Эта память называется буферной и, как и стек, организуется в ОЗУ.


Со времен создания ЭВМ фон Неймана основная память в компьютерной системе организована как линейное (одномерное)адресное пространство , состоящее из последовательности слов , а позже байтов. Аналогично организована и внешняя память . Хотя такая организация и отражает особенности используемого аппаратного обеспечения, она не соответствует способу, которым обычно создаются программы. Большинство программ организованы в виде модулей, некоторые из которых неизменны (только для чтения, только для исполнения), а другие содержат данные, которые могут быть изменены.

Если операционная система и аппаратное обеспечение могут эффективно работать с пользовательскими программами и данными, представленными модулями, то это обеспечивает ряд преимуществ.


  1. Модули могут быть созданы и скомпилированы независимо друг от друга, при этом все ссылки из одного модуля в другой разрешаются системой во время работы программы.

  2. Разные модули могут получать разные степени защиты (только чтение, только исполнение) за счет весьма умеренных накладных расходов.

  3. Возможно применение механизма, обеспечивающего совместное использование модулей разными процессами (для случая сотрудничества процессов в работе над одной задачей).
Память – важнейший ресурс вычислительной системы, требующий эффективного управления. Несмотря на то, что в наши дни память среднего домашнего компьютера в тысячи раз превышает память больших ЭВМ 70-х годов, программы увеличиваются в размере быстрее, чем память . Достаточно сказать, что только операционная система занимает сотни Мбайт (например, Windows 2000 – до 30 млн строк), не говоря о прикладных программах и базах данных, которые могут занимать в вычислительных системах десятки и сотни Гбайт.

Перефразированный закон Паркинсона гласит: "Программы расширяются, стремясь заполнить весь объем памяти, доступный для их поддержки" (сказано это было об ОС). В идеале программисты хотели бы иметь неограниченную в размере и скорости память , которая была бы энергонезависимой, т.е. сохраняла свое содержимое при выключении электричества , а также недорого бы стоила. Однако реально пока такой памяти нет. В то же время на любом этапе развития технологии производства запоминающих устройств действуют следующие достаточно устойчивые соотношения:


  • чем меньше время доступа, тем дороже бит;

  • чем выше емкость, тем ниже стоимость бита;

  • чем выше емкость, тем больше время доступа.
Чтобы найти выход из сложившийся ситуации, необходимо опираться не на отдельно взятые компоненты или технологию, а выстроить иерархию запоминающих устройств, показанную на рис. 6.1. При перемещении слева направо происходит следующее:

  • снижается стоимость бита;

  • возрастает емкость;

  • возрастает время доступа;

  • снижается частота обращений процессора к памяти.

Рис. 6.1. Иерархия памяти

Предположим, процессор имеет доступ к памяти двух уровней. На первом уровне содержится Е 1 слов, и он характеризуется временем доступа Т 1 = 1 нс. К этому уровню процессор может обращаться непосредственно. Однако если требуется получить слово , находящееся на втором уровне, то его сначала нужно передать на первый уровень. При этом передается не только требуемое слово , а блок данных , содержащий это слово . Поскольку адреса, к которым обращается процессор , имеют тенденцию собираться в группы (циклы, подпрограммы), процессор обращается к небольшому повторяющемуся набору команд. Таким образом, работа процессора с вновь полученным блоком памяти будет проходить достаточно длительное время.

Обозначим через Т 2 = 10 нс время обращения ко второму уровню памяти, а через Р – отношение числа нахождений нужного слова в быстрой памяти к числу всех обращений. Пусть в нашем примере Р = 0,95 (т.е. 95% обращений приходится на быструю память , что вполне реально), тогда среднее время доступа к памяти можно записать так:

T ср = 0,95*1нс + 0,05* (1нс+10нс)=1,55нс

Этот принцип можно применять не только к памяти с двумя уровнями. Реально так и происходит. Объем оперативной памяти существенно сказывается на характере протекания вычислительного процесса, так как он ограничивает число одновременно выполняющихся программ, т.е. уровень мультипрограммирования. Если предположить , что процесс проводит часть р своего времени в ожидании завершения операции ввода-вывода, то степень загрузки Z центрального процессора (ЦП) в идеальном случае будет выражаться зависимостью

Z = 1 - p n , где n – число процессов.

На рис. 6.2 показана зависимость Z=p(n) для различного времени ожидания завершения операции ввода-вывода (20%, 50% и 80%) и числа процессов n. Большое количество задач, необходимое для высокой загрузки процессора, требует большого объема оперативной памяти. В условиях, когда для обеспечения приемлемого уровня мультипрограммирования имеющейся памяти недостаточно, был предложен метод организации вычислительного процесса, при котором образы некоторых процессов целиком или частично временно выгружаются на диск .

Очевидно, что имеет смысл временно выгружать неактивные процессы, находящиеся в ожидании каких-либо ресурсов, в том числе очередного кванта времени центрального процессора. К моменту, когда пройдет очередь выполнения выгруженного процесса, его образ возвращается с диска в оперативную память . Если при этом обнаруживается, что свободного места в оперативной памяти не хватает , то на диск выгружается другой процесс.

Такая подмена (виртуализация ) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования, поскольку объем оперативной памяти теперь не столь жестко ограничивает число одновременно выполняемых процессов. При этом суммарный объем оперативной памяти, занимаемой образами процессов, может существенно превосходить имеющийся объем оперативной памяти.

В данном случае в распоряжение прикладного программиста предоставляется виртуальная оперативная память , размер которой намного превосходит реальную память системы и ограничивается только возможностями адресации используемого процесса (в ПК на базе Pentium 2 32 = 4 Гбайт). Вообще виртуальным (кажущимся) называется ресурс , обладающий свойствами (в данном случае большой объем ОП), которых в действительности у него нет.

Виртуализация оперативной памяти осуществляется совокупностью аппаратных и программных средств вычислительной системы (схемами процессора и операционной системой) автоматически без участия программиста и не сказывается на логике работы приложения.

Виртуализация памяти возможна на основе двух возможных подходов:


  • свопинг (swapping) – образы процессов выгружаются на диск и возвращаются в оперативную память целиком;

  • виртуальная память (virtual memory ) – между оперативной памятью и диском перемещаются части образов (сегменты, страницы, блоки и т.п.) процессов.
Недостатки свопинга:

  • избыточность перемещаемых данных и отсюда замедление работы системы и неэффективное использование памяти;

  • невозможность загрузить процесс, виртуальное пространство которого превышает имеющуюся в наличии свободную память.
Достоинство свопинга по сравнению с виртуальной памятью – меньшие затраты времени на преобразование адресов в кодах программ, поскольку оно делается один раз при загрузке с диска в память (однако это преимущество может быть незначительным, т.к. выполняется при очередной загрузке только часть кода и полностью преобразовывать код, может быть, и не надо).

Виртуальная память не имеет указанных недостатков, но ее ключевой проблемой является преобразование виртуальных адресов в физические (почему это проблема, будет ясно дальше, а пока можно отметить существенные затраты времени на этот процесс, если не принять специальных мер).

Концепция виртуальной памяти

В ВС с виртуальной памятью адресное пространство (АП) процесса (образ процесса) во время выполнения хранится во внешней памяти ЭВМ и загружается в реальную память по частям динамически по необходимости в любое свободное место РОП. Однако программа ничего не знает об этом , написана и выполняется так, как будто полностью находится в РОП.

Виртуальная память - это моделирование оперативной памяти во внешней памяти.

Механизм отображения виртуальных и реальных адресов устанавливает между ними соответствие и называется динамическим преобразованием адресов (ДПА).

Компьютер здесь уже выступает как логическое устройство, а не физическая машина с уникальными характеристиками. ДПА поддерживается на аппаратно-микропрограммном уровне. В МП Intel, начиная с 386 процессора, выполняется поддержка виртуальной памяти.

Такая процедура выполняется для EC ЭВМ - ряд 2 и выше, для СМ ЭВМ- 1700, для IBM PC – I386 и выше.

При управлении виртуальной памятью смежные виртуальные адреса не обязательно будут смежными реальными адресами (искусственная смежность). Программист освобождается от необходимости учитывать размещение своих процедур и данных в РОП. Он получает возможность писать программы наиболее естественным образом, прорабатывая лишь детали алгоритма и структуру программы, игнорируя конкретные особенности структуры аппаратных средств.

Механизм ДПА предполагает ведение таблиц, показывающих какие ячейки ВП в текущий момент времени находятся в РОП и где именно. Поскольку индивидуальное отображение элементов информации (пословное или побайтовое) не имеет смысла (так как под таблицы отображения адресов потребовалось бы РОП больше чем под процессы), то отображение адресов выполняется на уровне блоков ОП.

Рисунок 1 . Динамическое преобразование адресов

Проблема: какую часть процессов держать в ОП, в некоторые моменты времени, выталкивая одни участки РОП и размещая другие.

Еще один вопрос, который необходимо решать: Каким сделать размер блока ?

Увеличение размера блока приводит к уменьшению размера таблицы отображения блоков, но увеличивает время обмена и, наоборот, уменьшение размера блока приводит к увеличению таблиц и уменьшению времени обмена с внешней памятью.

Блоки могут быть фиксированного размера (страницы) и переменного размера (сегменты). В этой связи существует четыре способа организации виртуальной памяти:

1.Динамическая страничная организация.

2.Сегментная организация.

3.Комбинированная сегментно-страничная организация.

4.Двухуровневая страничная организация.

Виртуальные адреса в страничных и сегментных системах являются двухкомпонентными и представляют собой упорядоченную пару (p,d ), где p - номер блока (страницы либо сегмента), в которой размещается элемент, а d - смещение относительно начального адреса этого блока. Преобразование виртуального адреса V=(p,d ) в адрес реальной памяти r осуществляется следующим образом. При активизации очередного процесса в специальный регистр процессора загружается адрес таблицы отображения блоков данного процесса. В соответствии с номером блока p из таблице отображения блоков , считывается строка, в которой устанавливается соответствие между номерами виртуальных и физических страниц для страниц, загруженных в оперативную память, или делается отметка о том, что виртуальная страница выгружена на диск. Кроме того, в таблице страниц содержится управляющая информация, такая как признак модификации страницы, признак невыгружаемости (выгрузка некоторых страниц может быть запрещена), признак обращения к странице (используется для подсчета числа обращений за определенный период времени) и другие данные, формируемые и используемые механизмом виртуальной памяти. К считанному физическому адресу размещения выбранного блока добавляется размер смещения d и вычисляется требуемый реальный адрес.

Рисунок 2. Преобразование виртуального адреса в реальной адрес памяти

Рассмотрим, в чем состоит стратегия управления виртуальной памятью? Аналогично управлению РОП для управления ВП имеется три категории стратегий, при имеющейся цели снизить ожидание страниц и располагать в РОП только используемые блоки.

Стратегия вталкивания , определяющая, когда следует переписать страницу или сегмент из внешней памяти в ОП.

а) вталкивание по запросу - система ожидает ссылки на страницу/сегмент от выполняющегося процесса (прерывание по отсутствию страницы);

аргументы за:


  • путь выполнения программы наверняка предсказать невозможно;

  • гарантия расположения в ОП только нужных страниц;

  • накладные расходы на определение требуемых страниц минимальны;
аргументы против:

  • подкачка по одному блоку приводит к увеличению общего времени ожидания.
б) упреждающее вталкивание предполагает, что система может предвидеть необходимость использования в дальнейшем страницы/сегмента. Если вероятность обращений высока и есть свободная ОП, то соответствующие блоки переписываются в ОП.

Достоинство: сокращается время ожидания.

В настоящее время быстродействие аппаратуры увеличивается , и неоптимальные решения не приводят к уменьшению эффективности вычислительных систем.

Стратегия размещения, определяющая, куда поместить поступающую страницу/сегмент. В страничных системах - тривиально: в любой свободный блок (страница имеет фиксированный размер). В сегментных системах те же самые стратегии, что и для реальной ОП (в первую подходящую область, в наиболее подходящую, в наименее подходящую).

Стратегия выталкивания (замещения), определяющая, какую страницу/сегмент удалить из ОП для освобождения места поступающей страницы.

Здесь основная проблема "пробуксовки ", при которой вытолкнутая страница в следующий момент должна вновь размещаться в РОП.

Рассмотрим процедуры определения блоков для выталкивания из ОП.

а) выталкивание случайной страницы - в реальных системах не применяется;

б) выталкивание первой пришедшей страницы (FIFO - очередь). Для ее реализации необходимо устанавливать временные метки страниц.

Аргумент : у страницы уже были возможности использовать свой шанс.

Фактически : большая вероятность заместить активно используемые страницы, поскольку нахождение страниц длительное время может означать, что она постоянно в работе. Например, используемый редактор текстов.

в) выталкивание дольше всего неиспользованных страниц.

Для реализации необходимо реализовать обновляемые временные метки. Эвристический аргумент : - недавнее прошлое - хороший ориентир на будущее.

Недостаток - существенные издержки: постоянное обновление временных меток.

г) выталкивание реже всего используемых страниц - предполагает наличие счетчиков страниц (менее интенсивно, нежели обновляемые временные метки). Интуитивно оправдано, но тоже может быть не рационально.

д) выталкивание не использующихся в последнее время страниц - самыйраспространенный алгоритм с малыми издержками. Реализуется двумя аппаратными битами на страницу:

1.признак обращения 0 - было

1 - не было.

2.признак модификации записи 0 - неизменен.

1 - изменен.

Возможны следующие варианты комбинаций { 00,10,01,11}. Если изменений на странице не было , то страницу можно просто переписать, а не сохранять на диске.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: