Реферат «История развития средств связи. Развитие средств связи: от телеграфа до глобальной сети

В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.

Еще недавно междугородняя телефонная связь осуществлялась исключительно по воздушным линиям связи; при этом на надежность связи влияли грозы и возможность обледенения проводов. В настоящее время все шире применяются кабельные и радиорелейные линии, повышается уровень автоматизации связи.

Все разнообразие используемых в технике и быту систем связи, в основном радиосвязи, можно свести к трем видам, отличающимся способами передачи сигнала от передатчика к приемнику. В первом случае используется ненаправленная радиосвязь от передатчика к приемнику, типичная для широкого вещания радио и телевидения. Такой способ радиосвязи имеет то преимущество, что позволяет охватить практически неограниченное число абонентов - потребителей информации. Недостатками такого способа являются неэко-номное использование мощностей передатчика и мешающее влияния на другие аналогичные радиосистемы. В тех случаях, когда число абонентов ограничено и нет необходимости в широковещании, используется передача сигнала с помощью направленно излучающих антенн, а также при помощи специальных устройств, называемых линиями передачи сигнала.

В широковещательной связи обычно используется однонаправленная передача сигнала от радиостанции к потребителю, при направленной же связи, как правило, применяется двусторонняя связь, то есть на каждом конце системы связи имеются и передатчик и приемник (приемопередатчик - ПП). При направленной связи не нужны передатчики большой мощности, и их можно установить на обоих концах системы. При направленной магистральной связи на дальние расстояния через пространства и в линиях передачи используются ретрансляторы, которые ставятся вдоль трассы. Они усиливают сигнал, очищают его от помех и передают дальше. Рассмотрим принципы работы основных видов линий передачи сигналов, начиная от двухпроводной линии, которая начала применятся в начале нашего века и кое-где в сельских местностях используется до сих пор для передачи телеграфных и телефонных сигналов, и кончая современной волоконно-оптической линией, которая наряду с космической (спутниковой) связью несомненно составит связь будущего.

Двухпроводная линия: провода подвешиваются на столбах, расстояние между которыми порядка метра. Применяется для передачи сигналов на волнах порядка сотен и более метров, что соответствует частотам в диапазоне практически от 0 до 1 МГц. Используется для трансляции местного радиовещания.

Электрический кабель.

Эл. каб. делятся на низкочастотные и высокочастотные, одножильные и многожильные. Ка-беля применяются для передачи сигналов на частотах до 1 ГГц, что соответствует длинам волн от 30 см и более. Примером может служить телевизионный кабель, соединяющий ан-тенну с телевизионным приемником.

Метрический волновод представляет собой полую металлическую трубку круглого или прямоугольного сечения. Электр. волны могут распространятся по волноводу отражаясь от стенок. Металл. волноводы получили применение в качестве линий передачи сантиметровых и миллиметровых волн. Круглый волновод не получил применение для дальней связи, так как требуется выполнить прямолинейность трассы. Это оказалось очень дорогостоящим.

Диэлектрический волновод - это стержень из диэлектрического материала, в котором могут распространятся электромагнитные волны с малыми потерями. Они получили применения для передачи сигнала на миллиметровых волнах на сравнительно короткие расстояния (метры, десятки метров). Они оказались чрезвычайно перспективными для приме-нения в диапазоне световых волн, точнее, в диапазоне инфракрасных волн с длиной волны порядка микрометра.

Радиорелейная линия.

Чтобы обеспечить передачу сигнала за пределы прямой видимости, антенны с ретрансляторами помещали на высоко летящие объекты: самолеты и спутники, а также на специальные мачты высотой до 100 метров, устанавливаемые вдоль трассы на расстоянии 40-50 км друг от друга. Радиорелейные линии сейчас широко применяются. Их можно увидеть вдоль магистральных шоссе и железнодорожных линий.

Лучеводная линия.

В коротковолновой части миллиметрового диапазона волн, субмиллиметровом диапазоне и вплоть до светового диапазона используются лучеводные линии передач. Представляют собой рад линз на подставках в свободном пространстве или помещенных в трубу, выполняющую роль механической защиты. Как и волноводные, лучеводные линии не нашли широкого применения в качестве магистральных линий дальней связи, прежде всего по экономическим причинам. Слишком дорого обходится прокладка таких линий из-за требований к точности установки линз или зеркал. Земля "дышит", и линзы смещаются.

Волоконно-оптическая линия. Основу вол.-опт. линии составляет волоконно-оптический кабель, главным элементов которого является волоконный световод -стеклянное волокно из высококачественного оптического стекла. Стекла оказались более прозрачными в инфракрасном диапазоне.

В настоящее время глубоко начались развиваться компьютерные сети. С помощью их можно осуществить практически любой способ передачи информации.

Содержание

Введение…………………………………………….......................................

    Беспроводные средства связи..............................................................

    Влияние на здоровье излучения сотового телефона.........................

    Влияние базовых станций на здоровье человека..............................

    Снижение электромагнитного излучения..........................................

    Влияние теле- и радиостанций............................................................

    Спутниковая связь и радары................................................................

    Защита от электромагнитного излучения...........................................

Заключение.......................................................................................................

Выводы..............................................................................................................

Список использованных источников…….....................................................

Введение

Актуальность:

Цель исследования :

Задачи исследования :

Объект исследования: средства связи.

Предмет исследования:

    2. Влияние на здоровье излучения сотового телефона.

    Сегодня же приходится вздрагивать и от появляющихся с завидной периодичностью сообщений о вреде мобильных телефонов для здоровья. Споры об их опасности не утихают уже лет десять, причем на каждое научное исследование, доказывающее их вред, появляется опровержение, подготовленное не менее авторитетными учеными.

    Среди обвинений, предъявляемых к мобильным телефонам и другим устройствам, создающим электромагнитное поле, наиболее страшным является обвинение в канцерогенности. Однако все официальные исследования, обнародованные за последние годы, опровергают эти обвинения. Данные, опубликованные Королевским научным обществом Канады, американским Фондом здоровья и Британской независимой экспертной группой по мобильным телефонам, содержат одинаковые выводы о том, что разговоры по сотовому телефону не могут вызвать рак или какие-либо иные заболевания.

    И все-таки, несмотря на подавляющее большинство оптимистических выводов, некоторые исследователи не теряют надежду "уличить" мобильники в тех или иных грехах. Так, недавно венгерский ученый Имре Фейес из Университета Сегеда, обследовав 221 добровольца на протяжении 13 месяцев, обнаружил, что мобильный телефон может на 30 процентов ухудшить качество (а значит – и эффективность) спермы. При этом не обязательно много говорить по нему, достаточно просто носить его с собой в "удобном" месте – кармане брюк или на ремне.

    А сотрудники Института высшей нервной деятельности и нейрофизиологии Российской Академии наук недавно обнаружили, что работающий в режиме ожидания мобильник способен сократить и расстроить самые важные фазы ночного отдыха – быстрый сон и медленный сон.

    Помимо непосредственного воздействия электромагнитного поля на организм человека, предполагается также, что мобильные телефоны несут косвенную опасность, например, способны выводить из строя навигационные приборы самолетов или способствовать пожарам на автозаправочных станциях. И хотя никаких объективных данных об этом нет, разговаривать по мобильным телефонам во время полетов и на заправках на всякий случай запрещено.

    Радиоволны от мобильных телефонов повреждают клетки в организме человека и изменяют его ДНК. К такому выводу пришли ученые, работающие над проектом Reflex, цель которого исследование воздействия мобильных телефонов на человеческий организм.

    В ходе проекта под названием Reflex двенадцать исследовательских групп из семи европейских стран на протяжении четырех лет изучали воздействие излучения мобильных телефонов на клетки животных и человека. Исследование координировалось немецкой группой Verum и почти полностью финансировалось Европейским союзом. Как сообщает Reuters, несмотря на вывод, что электромагнитное излучение повреждает ДНК в лабораторных условиях, ученые не смогли однозначно доказать, что мобильники угрожают здоровью человека в реальной жизни. Они считают, что для подобных заключений необходимы дальнейшие исследования вне стен лаборатории – на животных и людях-добровольцах.

    В то же время, в отчете проекта Reflex рекомендуется использовать мобильный телефон лишь в случае острой необходимости, особенно это касается детей. «Мы не хотим устраивать панику, однако меры предосторожности не помешают», – заявил Фракц Адлкофер (Franz Adlkofer), руководитель проекта Reflex. По его словам, к более конкретны и окончательным выводам ученые смогут прийти через 4–5 лет.

    В свою очередь, представители Ассоциации операторов мобильных телефонов считают результаты исследования предварительными и требующими независимого подтверждения, сообщает ВВС. В то же время, ни один из шести ведущих производителей мобильных телефон не прокомментировал результаты исследования.

    Ученые использовали в своих экспериментах излучение в пределах так называемого удельного коэффициента поглощения (Specific Absorption Rate (SAR)) между 0,3 до 2 ватт/кг. Большинство мобильных телефонов излучает в диапазоне SAR от 0,5 до 1 ватт/кг, но не более 2 ватт/кг. Данное излучение в лабораторных условиях вызвало серьезные повреждения ДНК – носителя генетической информации. Повреждения ДНК могут вести к заболеваниям и, если повреждены половые клетки, рождению неполноценных детей. Одна клетка с нарушениями структуры ДНК может дать начало доброкачественной или злокачественной опухоли. В клетках существует механизм репарации (устранения) повреждений ДНК, однако он не всегда срабатывает. Клетки с нарушениями уничтожаются иммунной системой, однако это тоже происходит не всегда. В ходе исследования во многих случаях клетки-мутанты передавали свои приобретенные свойства следующему поколению клеток.

    Сегодня в мире насчитывается около 1,5 млрд. пользователей мобильных телефонов. Лишь в этом году, по прогнозам аналитиков, будет продано около 650 млн. трубок. Споры о том, вредно для человека это достижение прогресса или нет, ведутся уже много лет. Представители компаний-производителей мобильных телефонов, объем рынка которых оценивается в $100 млрд. в год, рьяно отстаивают свою позицию, утверждая, что нет никаких научных доказательств вреда электромагнитного излучения.

    Но есть ученые, которые утверждают: все это лишь «страшилки» и сотовая связь для нас совсем не опасна.

    Финн Тахванайнен измерил пульс и давление у 32 человек после 35-минутной беседы. И никаких проблем не заметил!

    Итальянец Калабрезе не обнаружил влияния электромагнитного поля телефона на память и познавательные способности 52 добровольцев.

    «Мы провели множество опытов на крысах и обезьянах. И на детенышах, и на беременных самках. И не обнаружили воздействия мобильных телефонов ни на развитие рака мозга, ни на работу центральной нервной системы, ни на развитие потомства, ни на биохимию крови или поведение животных!» - уверен Майкл Свикорд, сотрудник научной лаборатории компании «Моторола» в Калифорнии.

    Правда, по странному совпадению большинство таких исследований оплачено из фондов производителей трубок.

    3 Влияние базовых станций на здоровье человека.

    В последнее время в мире не смолкают дискуссии о том, оказывает ли вредное воздействие сотовая связь и передающие антенны на здоровье человека, или же нам можно ничего не опасаться. Как известно, данная проблема была затронута даже в Государственной Думе.

    Всемирная Организация Здравоохранения (ВОЗ) учредила специальный Международный проект по изучению электромагнитных полей (ЭМП) и их влияние на здоровье человека. В особенности специалистов интересуют поля радиочастотного диапазона (РП), которые создаются мобильными терминалами или базовыми станциями (БС) сотовой связи. Как известно, интенсивность РП-сигнала, передаваемого БС аналогична радио или телевизионному сигналам, и в сотни раз ниже РП-сигналу, производимому мобильным телефоном.

    До настоящего времени отсутствуют достоверные подтверждения тому, что использование мобильного телефона или длительное воздействие сигнала от БС, вызывают какие-либо изменения в состоянии здоровья людей. ВОЗ в течение последних 8-ми лет всячески стимулировала исследования в этой области. Однако ни в одной научной публикации, или в результатах исследований не отмечено свидетельств вредного воздействия РП на человека.

    Сотовая связь обеспечивается радиопередающими базовыми станциями и мобильными радиотелефонами пользователей-абонентов. Среди установленных в одном месте антенн базовых станций имеются как передающие, так и приёмные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком луче. Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.

    Несмотря на то, что влияние базовых станций и сотовых телефонов на здоровье человека не установлено, можно с профилактической целью порекомендовать пользователям сотовой связи соблюдать некоторые рекомендации:

    Использовать телефон в случаях необходимости;

    Не разговаривать более трёх – четырёх минут;

    Не допускать использования сотового телефона детьми;

    Выбирать телефон с меньшей мощностью излучения.

    ФГУЗ «Центр гигиены и эпидемиологии в Республике Мордовия» постоянно контролирует влияние передающих станций мобильной связи на здоровье населения путём регулярных инструментальных исследований уровней плотности электромагнитных излучений. Показатели излучения нормируются Санитарными правилами и нормами 2.1.8./ 2.2.4. 1190 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи».

    В 2006 году обследовано всего (при вводе в эксплуатацию и действующих) 110 базовых станций мобильной связи, проведено 1978 измерений. Во всех случаях превышения предельно допустимого уровня электромагнитного излучения не выявлено.

    4 Снижение электромагнитного излучения.

    Сотовый телефон является устройством, которое несет потенциальную опасность для вашего здоровья. Паниковать причины нет. Однако стоит по возможности оградить себя от потенциальных проблем со здоровьем. Ведь тем и отличается человек от всего другого живого мира, что он может изучать и делать выводы.

    Лобби производителей сотовых телефон трудно недооценить. Гигантский финансовый конвейер запущен и остановить его невозможно. Обратите внимание, что табачная индустрия имеет годовой оборот существенно меньше, чем сотовая индустрия, вред курения очевиден, но финансовый механизм работает без сбоев. Поэтому разговоры о законодательном снижении «вредного излучения» сотовых телефонов – политический блеф.

    В конце прошлого года было проведено важное исследование. Ученые Европейского союза показали, что электромагнитное излучение с SAR от 0,3 до 2 ватт/кг повреждает ДНК. Переоценить эту работу очень сложно. Временной эксперимент проходил на протяжение 4 лет. Однако лобби сотовой индустрии буквально растоптали все результаты. Аргументы были самые примитивные.

    Купленные «мобильные ученые» заявили, что все полученные данные вытекают только из лабораторных показаний. В реальной жизни якобы все обстоит по-другому. Проповедники этой сомнительной доктрины победили.

    Медики заявляют, что частые разговоры по сотовому телефону приводят к усталости, раздражительности, головокружению, бессоннице, тошноте, раздражению кожи, нарушениям половых функций у мужчин и женщин, а так же к раку. Европейские врачи уверены, что каждый 15 случай таких заболеваний – это следствие мобильной телефонии.

    Сотовый телефон является малогабаритной радиостанцией, излучающей электромагнитные волны. Волны способны воздействовать на любые материалы – органику и неорганику. Физическая медицина давно обратила свое внимание на изучение электромагнитных волн. Выявлены многие закономерности, но в подавляющем большинстве случаев мы не можем говорить об однозначном влиянии, особенно когда речь заходит о высоких частотах.

    Известно, что электромагнитное излучение частотой выше 1 МГц разогревает ткани организма (эффект микроволновой печи). Человеческие клетки очень болезненно относятся к этому процессу. Безусловно, он носит вероятностный характер. Однако численно оценить его никто пока не может. Разумеется, зависимость строится от мощности облучения, вида тканей, времени и частоты. Чем чреват перегрев тканей? Прежде всего - разрушение белков в клетках. Последствия могут носить самый неожиданный характер. Клетки могут превращаться в раковые. Возможно возникновение доброкачественных опухолей, отмирание клеток, их «самолечение» и т.д. Одним словом, перегрев вреден для организма. Часто речь заходит о том, что ткани имеют собственный потенциал терморегуляции, который и защищает их. Да это так. До определенной планки их можно греть. Однако мы подчеркиваем, что все процессы по мутациям носят вероятностный характер.

    Второй доподлинно известный факт говорит о том, что электромагнитные поля воздействуют на нервную систему. Механизм этого процесса прост. Поля нарушают проницаемость клеточных мембран для ионов кальция. В результате нервная система начинает неправильно функционировать. Проводилось множество экспериментов на собаках, когда они под воздействием электромагнитного излучения становились нервными и возбудимыми. Человеческий организм откликается абсолютно так же. Германские медики продемонстрировали, что электромагнитное излучение у разных людей вызывает депрессию и наоборот взрывы в настроении. Это говорит, что отклик организма очень индивидуален.

    Производители сотовых телефонов планомерно поднимают частоты мобильников. Трубки начинают работать в частотных диапазонах 1800 МГц и 1900 МГц. В этом сантиметровом диапазоне распространение волн становятся непредсказуемым. Их излучение достигает нашего тела и «греет» его, электромагнитные волны начинают воздействовать на ткани человеческого организма.

    Согласно существующим в России временным допустимым уровням электромагнитных излучений плотность потока (ПП) на пользователей мобильных телефонов не должна превышать 100 мкВт/см2. Необходимо отметить, что в природных условиях значение плотности потока высокочастотного излучения исчезающе мало и составляет лишь 0,1 нВт/см2.

    Сотовый телефон излучает наибольшую мощность во время сеансов связи, максимальная мощность излучается сотовым телефоном во время установления связи. Вы наверно, слушали какие помехи способен навести ваш сотовый на акустику.

    Сотовый телефон адаптивно меняет мощность излучения, в зависимости от условий приёма – при плохом сигнале от базы повышает мощность передатчика до максимума (в городе до 0,6 Ватта, в области до 2 Ватт), а при хорошем приеме снижает до минимума - 0,01 Вт (при полной шкале). Это можно заметить по скорости разряда аккумулятора сотового телефона.

    Излучаемая мощность репитера не большая ~ 0,1 Вт, как у базы обычного квартирного радиотелефона, кроме того, эта мощность делится на несколько антенн (~ 25 мВт на антенну), а антенны находятся достаточно далеко от абонентов (2-10 м). Плотность Электромагнитного потока от телефона убывает обратно пропорционально квадрату расстояния, таким образом излучаемая мощность антенны ретранслятора ничтожно мала.

    Сотовый телефон, который находится около головы абонента в пределах 2-3 см, работает на минимуме мощности 0,01 Вт, поскольку ретранслятор обеспечивает хороший сигнал от базовой станции (полную шкалу).

    Таким образом, установка сотового ретранслятора (репитера) в помещении с плохим уровнем сигнала снижает мощность излучения от мобильного телефона в 60 (!) раз, а плотность электромагнитного потока в 5,5 раз.

    5. Влияние телефонных и радиостанций.

    На территории России в настоящее время размещается значительное количество передающих радиоцентров различной принадлежности. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики, и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком.

    Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части.

    Первая часть зоны - это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны - это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны.

    Расположение РНЦ может быть различным, например, в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки.

    Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ.

    Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.

    Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.

    Радиостанции ДВ (частоты 30 - 300 кГц). В этом диапазоне длина волн относительно большая (например, 2000 м для частоты 150 кГц). На расстоянии одной длины волны или меньше от антенны поле может быть достаточно большим, например, на расстоянии 30 м от антенны передатчика мощностью 500 кВт, работающего на частоте 145 кГц, электрическое поле может быть выше 630 В/м, а магнитное - выше 1,2 А/м.

    Радиостанции СВ (частоты 300 кГц - 3 МГц). Данные для радиостанций этого типа говорят, что напряженность электрического поля на расстоянии 200 м может достигать 10 В/м, на расстоянии 100 м - 25 В/м, на расстоянии 30 м - 275 В/м (приведены данные для передатчика мощностью 50 кВт).

    Радиостанции КВ (частоты 3 - 30 МГц). Передатчики радиостанций КВ имеют обычно меньшую мощность. Однако они чаще размещаются в городах, могут быть размещены даже на крышах жилых зданий на высоте 10- 100 м. Передатчик мощностью 100 кВт на расстоянии 100 м может создавать напряженность электрического поля 44 В/м и магнитного поля 0,12 Ф/м.

    Телевизионные передатчики. Телевизионные передатчики располагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. В России в настоящее время проблема оценки уровня ЭМП телевизионных передатчиков особенно актуальна в связи с резким ростом числа телевизионных каналов и передающих станций.

    Основной принцип обеспечение безопасности - соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет е соответствия установленным ПДУ.

    6. Спутниковая связь и радары.

    Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч - главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

    Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси.

    Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин - излучение, 30 мин - пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд.

    Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2.

    Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии.

    7. Защита от электромагнитного излучения.

    Организационные мероприятия по защите от ЭМП К организационным мероприятиям по защите от действия ЭМП относятся: выбор режимов работы излучающего оборудования, обеспечивающего уровень излучения, не превышающий предельно допустимый, ограничение места и времени нахождения в зоне действия ЭМП (защита расстоянием и временем), обозначение и ограждение зон с повышенным уровнем ЭМП.

    Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. В действующих ПДУ предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения.

    Защита расстоянием основывается на падении интенсивности излучения, которое обратно пропорционально квадрату расстояния и применяется, если невозможно ослабить ЭМП другими мерами, в том числе и защитой временем. Защита расстоянием положена в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.п. Для каждой установки, излучающей электромагнитную энергию, должны определяться санитарно-защитные зоны в которых интенсивность ЭМП превышает ПДУ. Границы зон определяются расчетно для каждого конкретного случая размещения излучающей установки при работе их на максимальную мощность излучения и контролируются с помощью приборов. В соответствии с ГОСТ 12.1.026-80 зоны излучения ограждаются либо устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!».

    Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП. Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью.

    Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой. В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием. В последние годы в качестве радио экранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы.

    Заключение.

    Электромагнитное излучение увидеть невозможно, а представить не каждому под силу, и потому нормальный человек его почти не опасается. Между тем если суммировать влияние электромагнитного излучения всех приборов на планете, то уровень естественного геомагнитного поля Земли окажется превышен в миллионы раз. Масштабы электромагнитного загрязнения среды обитания людей стали столь существенны, что Всемирная организация здравоохранения включила эту проблему в число наиболее актуальных для человечества.

    Энергетическое влияние электромагнитного излучения может быть различной степени и силы. От неощутимого человеком (что наблюдается наиболее часто) до теплового ощущения при излучении высокой мощности. Сверхмощные электромагнитные влияния могут выводить из строя приборы и электроаппаратуру. По тяжести влияния электромагнитное излучение может не восприниматься человеком вообще или же привести к полному истощению с функциональным изменением деятельности мозга и смертельному исходу. Исследования показали, что продолжительное влияние электромагнитного излучения, даже относительно слабого уровня, может вызвать раковые заболевания, потерю памяти, болезни Паркинсона и Альцгеймера, импотенцию и даже повысить склонность к самоубийству. Электромагнитные излучения способствуют изменению гормонального статуса мужского организма, возрастанию уровня хромосомных аберраций, вызывают изменения в репродуктивной системе. Сложность проблемы заключается не только во влиянии на здоровье населения, но и на здоровье и интеллект будущих поколений. Идет возрастание врожденных аномалий развития. За последние годы в городах количество разнообразных источников электромагнитных излучений во всем частотном диапазоне резко увеличилось и продолжает стремительно увеличиваться. Это системы сотовой связи, радары ГАИ, новые телеканалы и множество радиовещательных станций.

    Выводы:

    • экономия времени и денег.

    Вред от мобильных телефонов:

    Как защитить себя от этого:

      Звоните на улице

      Держите трубку вертикально

    Список использованных источников.

    1. Влияние базовых станций сотовой связи на здоровье человека [Электронный ресурс]: http://www.moris.ru/~gorses/baz_stanc.htm

    2. Иксар В. Беспроводные средства связи и безопасность [Электронный ресурс]: http://www.warning.dp.ua/tel5.htm

    3. Электромагнитное поле и его влияние на здоровье человека [Электронный ресурс]: http://www.it-med.ru/library/ie/el_magn_field.htm

    4. Человек и электромагнитное излучение [Электронный ресурс]: http://www.geopatogen.ru/article10.html

    5. Снижение электромагнитного излучения мобильных телефонов при установке сотового ретранслятора [Электронный ресурс]: http:// www.best-gsm.ru/safe.php

    6. Мобильная безопасность [Электронный ресурс]: http://www.1wr.ru/ category/mobilnaya_bezopasnost/mobilnaya_bezopasnost/1

    7. «Мобильники приводят к мутации генов – Тверские вести, 15.10.2005.

    8. Мобильники приводят к мутации генов». – Тверские вести, 15.10.2005.

    Пояснительная записка

    Тема моего индивидуального проекта называется: «Современные средства связи».

    Так уж устроен мир, что любое техническое изобретение человеческого разума, расширяющее наши возможности и создающее для нас дополнительный комфорт, неизбежно содержит в себе и отрицательные стороны, которые могут представлять потенциальную опасность для пользователя. Не являются исключением в этом плане и современные средства персональной связи. Да, они несоизмеримо расширили нашу свободу, «отвязав» нас от телефонного аппарата на рабочем столе и дав нам возможность в любое время и в любом месте связаться с необходимым корреспондентом. Но немногие знают, что эти «чудеса техники» скрывают в себе весьма опасные «ловушки». И для того, чтобы однажды ваш помощник (скажем, сотовый телефон) не превратился в вашего врага, эти «ловушки» следует хорошо изучить.

    Актуальность: Потребность в общении, в передаче и хранении информации возникла и развивалась вместе с развитием человеческого общества. Сегодня уже можно утверждать, что средства связи является определяющим фактором интеллектуальной, экономической и оборонной возможностей человеческого общества, государства. Средства связи непрерывно совершенствуются в соответствии с изменением условий жизни, с развитием культуры и техники.

    Цель исследования : в данной работе мы рассмотрим основные проблемы здоровья и жизнедеятельности человека, связанные с использованием современных средств связи.

    Задачи исследования :

      Рассмотреть виды средств связи;

      Определить значение средств связи для человека;

      Выявить положительные и отрицательные черты средств связи.

    Объект исследования: средства связи.

    Предмет исследования: значение средств связи в жизни каждого человека.

    Мы с вами настолько привыкли всегда «быть на связи», что даже не помним да и не хотим вспоминать, как жили лет 20 назад без этой самой связи. Мы стояли в очередях у телефонных будок, всегда имели в кармане две копейки, наизусть знали номера телефонов друзей и коллег. Но технический прогресс «подсадил» нас на сотовую связь, и теперь мобильными телефонами пользуются буквально все, начиная от первоклашек и заканчивая пенсионерами. Но все ли так хорошо и благополучно? Не прячется ли в маленьком аппарате большая опасность для нас и, в первую очередь, для наших детей?

    Польза от мобильных телефонов:

      экономия времени и денег.

      позволяет общаться в любом месте

      Нужен в экстренных ситуациях.

    Вред от мобильных телефонов:

    Ученые со всего мира на протяжении уже несколько десятилетий бьют тревогу, заявляя о результатах своих экспериментов над животными. Они говорят об опасности мобильных телефонов и утверждают, что сотовые телефоны оказывают негативное влияние на слух, зрение, мозговую деятельность, иммунитет, щитовидную железу.

    Как защитить себя от этого:

      Звоните на улице

      Держите трубку на расстоянии от уха

      Переключите телефон на диапазон 1800 МГц

      Держите трубку вертикально

      Стараться не более 2-3 минут за один раз разговаривать

Всё только начинается...

С древних времен человечество искало и совершенствовало средства обмена информацией. На малые расстояния сообщения передавались жестами и речью, на большие-с помощью костров, находящихся друг от друга в пределах прямой видимости. Иногда между пунктами выстраивалась цепочка людей и новости передавались голосом по этой цепочке от одного пункта до другого. В центральной Африке для связи между племенами широко использовали барабаны тамтам.

Идеи о возможности передачи электрических зарядов на расстояния и об осуществлении таким путём телеграфной связи высказывались с середины XVIII века. Профессор Лейпцинского университета Иоган Винклер - именно он усовершенствовал электростатическую машину, предложив натирать стеклянный диск не руками, а подушечками из шелка и кожи, - в 1744 г. писал: "С помощью изолированного подвешенного проводника возможна передача электричества на край света со скоростью полёта пули". В шотландском журнале "The Scot"s Magazine" 1 февраля 1753 г. появилась статья, подписанная только Ч.М. (в последствии выяснилось, что её автор Чарльз Морисон - учёный из г. Ренфрю), в которой впервые была описана возможная система электросвязи. Предлагалось подвесить между двумя пунктами столько неизолированных проволок, сколько букв в алфавите. Проволоки в обоих пунктах прикрепить к стеклянным стойкам, чтобы концы их свисали и заканчивались бузиновыми шариками, под которыми на расстоянии 3-4мм расположить буквы, написанные на бумажках. При касании в пункте передачи кондуктором электростатической машины конца проволоки, соответствующей требуемой букве, в пункте приёма наэлектризованный бузиновый шарик притягивал бы бумажку с этой буквой.

В 1792 г. Женевский физик Жорж Луи Лесаж описал свой проект линии электрической связи, основанной на прокладке 24 медных неизолированных проволок в глиняной трубе, внутри которой через каждые 1,5...2м устанавливались бы перегородки-шайбы из глазурованной глины или стекла с отверстиями для проволок. Последние, таким образом, сохраняли бы параллельное расположение, не соприкасаясь между собой. По одной неподтверждённой, но весьма вероятной версии Лесанж в 1774 г. в домашних условиях провёл несколько удачных опытов телеграфирование по схеме Морисона - с электризацией бузиновых шариков, притягивающих буквы. Передача одного слова занимала 10...15 мин, а фразы 2...3 часа.

Профессор И. Бекман из Карлсруэ в 1794 г. писал: "Чудовищная стоимость и другие препятствия никогда не позволят серьёзно рекомендовать применение электрического телеграфа.

А всего лишь через два года после этого пресовутого "никогда" по проекту испанского медика Франсиско Саьвы военным инженером Августином Бетанкуром была сооружена первая в мире линия электрического телеграфа длиной 42 км между Мадридом и Аранхуэсом.

Ситуация повторилась через четверть века спустя. С 1794 года с начало в Европе, а затем в Америке широкое распространение получил так называемый семафорный телеграф, изобретённый французским инженером Клодом Шаппом и даже описанный Александром Дюма в романе "Граф Монтекристо". На трассе линии строились на расстоянии прямой видимости (8...10 км) высокие башни с шестами типа современных антенн с подвижными перекладинами, взаимное расположение которых обозначало букву, слог или даже целое слово. На передающей станции сообщение кодировалось, и перекладины поочерёдно устанавливались в нужные положения. Телеграфисты последующих станций дублировали эти положения. На каждой башне посменно дежурили двое: один - принимал сигнал от предыдущей станции, другой - передавал его на следующую станцию.

Хотя этот телеграф и послужил человечеству более полувека, он не удовлетворял потребности общества в быстрой связи. На передачу одной депеши затрачивалось в среднем 30 мин. Неизбежно были перерывы связи при дождях, туманах, вьюгах. Естественно, что "чудаки" изыскивали более совершенные средства связи. Лондонский физик и астроном Френсис Рональдс в 1816 г. начал проводить опыты с электростатическим телеграфом. В своём саду, в пригороде Лондона, он соорудил 13-километровую линию из 39 неизолированных проводов, которые подвешивались посредством шелковых нитей на деревянных рамах, установленных через 20 м. Часть линии была подземной - в траншею глубиной 1,2 м и длиной 150 м был уложен деревянный просмоленный желоб, на дне которого были расположены стеклянные трубки с пропущенными в них медными проволоками.

В 1823 г. Рональдс опубликовал брошюру с изложением полученных результатов. Кстати, это был первый в мире печатный труд в области электрической связи. Но когда он предложил свою систему телеграфа властям, Британское Адмиралтейство заявило: "Их светлости вполне удовлетворены существующей системой телеграфа (вышеописанного семафорного) и не намерены заменять её другой".

Буквально через несколько месяцев после открытия Эрстедом эффекта воздействия электрического тока на магнитную стрелку эстафету дальнейшего развития электромагнетизма подхватил знаменитый французский физик, теоретик, Андре Ампер - основоположник электродинамики. В одном из своих сообщений в академии наук в октябре 1820 года он первым выдвинул идею электромагнитного телеграфа. " Подтвердилась возможность, - писал он, - заставить перемещаться намагниченную стрелку, находящуюся на большом расстоянии от батареи, с помощью очень длинного провода". И далее: "Можно было бы... передавать сообщения, посылая телеграфные сигналы по очереди по соответствующим проводам. При этом количество проводов и стрелок должно быть взято равным числу букв в алфавите. На приёмном конце должен находиться оператор, который записывал бы переданные буквы, наблюдая отклоняющиеся стрелки. Если провода от батареи соединить с клавиатурой, клавиши которой были бы помечены буквами, то телеграфирование можно будет осуществлять нажатием клавиш. Передача каждой буквы занимала бы лишь время, необходимое для нажатия клавиш, с одной стороны, и прочтения буквы - с другой стороны".

Не принимая новаторскую идею, английский физик П. Барлоу в 1824 году писал: "В самой ранней стадии экспериментов с электромагнетизмом Ампер предложил создать телеграф мгновенного действия при помощи проводов и компасов. Однако сомнительным было утверждение,... что окажется возможным осуществить указанный проект с проводом длинной до четырёх миль (6,5 км). Произведенные мною опыты обнаружили, что заметное ослабление действия происходит уже при длине провода 200 футов (61 метр), и это меня убедило в неосуществимости подобного проекта".

А всего лишь еще через восемь лет член-корреспондент Российской академии наук Павел Львович Шиллинг воплотил идею Ампера в реальную конструкцию.

Изобретатель электромагнитного телеграфа П. Л. Шиллинг первым понял сложность изготовления на заре электротехники надёжных подземных кабелей и предложил наземную часть проектируемой в 1835-1836 гг. телеграфной линии сделать воздушной, подвесив неизолированный голый провод на столбах вдоль Петергофской дороги. Это был первый в мире проект воздушной линии связи. Но члены правительственного "Комитета для рассмотрения электромагнетического телеграфа" отвергли показавшийся им фантастическим проект Шиллинга. Его предложение было встречено недоброжелательными и насмешливыми возгласами.

А через 30 лет, в 1865 году, когда протяженность телеграфных линий в странах Европы составила 150 000 км, 97% из них приходились на долю линий воздушной подвески.

Телефон.

Изобретение телефона принадлежит 29 - летнему шотландцу, Александру Грехем Беллу. Попытки передачи звуковой информации посредством электричества предпринимались начиная с середины XIX столетия. Едва ли не первым в 1849 - 1854 гг. разрабатывал идею телефонирования механик парижского телеграфа Шарль Бурсель. Однако в действующее устройство свою идею он не воплотил.

Белл с 1873 года пытался сконструировать гармонический телеграф, добиваясь возможности передавать по одному проводу одновременно семь телеграмм (по числу нот в октаве). Он использовал семь пар гибких металлических пластинок, подобных камертону, при этом каждая пара настраивалась на свою частоту. Во время опытов 2 июня 1875 года свободный конец одной из пластинок на передающей стороне линии приварился к контакту. Помощник Белла механик Томас Ватсон, безуспешно пытаясь устранить неисправность, чертыхался, возможно, даже используя не совсем нормативную лексику. Находящийся в другой комнате и манипулировавший приемными пластинками Белл своим чутким натренированным ухом уловил звук, дошедший по проводу. Самопроизвольно закрепленная на обоих концах пластинка превратилась в гибкую своеобразную мембрану и, находясь над полюсом магнита, изменяла его магнитный поток. Вследствие этого поступавший в линию электрический ток изменялся соответственно колебаниям воздуха, вызванным бормотанием Ватсона. Это был момент зарождения телефона.

Устройство называлось "трубкой Белла". Ее следовало прикладывать попеременно то ко рту, то к уху либо пользоваться двумя трубками одновременно.

Радио.

7 мая (25 апреля по старому стилю) 1895 г. произошло историческое событие, которое по достоинству было оценено лишь спустя несколько лет. На заседании физического отделения Русского физико-химического общества (РФХО) выступил преподаватель Минного офицерского класса Александр Степанович Попов с докладом "Об отношении металлических порошков к электрическим колебаниям". Во время доклада А.С. Попов демонстрировал работу созданного им устройства, предназначенного для приёма и регистрации электромагнитных волн. Это был первый в мире радиоприемник. Он чутко реагировал электрическим звонком на посылки электромагнитных колебаний, которые генерировались вибратором Герца.

Схема первого приёмника А. С. Попова.

Вот что писала газета "Кронштадский вестник" от 30 апреля (12 мая) 1895 г. по этому поводу: Уважаемый преподаватель А. С. Попов... комбинировал особый переносной прибор, отвечающий на электрические колебания обыкновенным электрическим звонком и чувствительный к герцевским волнам на открытом воздухе на расстоянии до 30 сажень.

Изобретение радио Поповым было закономерным итогом его целеустремлённых исследований электромагнитных колебаний.

В 1894 г. в своих опытах А. С. Попов начал использовать в качестве индикатора электромагнитных излучений когерер французского учёного Э. Бранли (стеклянная трубка, заполненная металлическими опилками), впервые применённый для этих целей английским исследователем О. Лоджем. Александр Степанович упорно работал над повышением чувствительности когерера к лучам Герца и восстановлением его способности регистрировать на новые импульсы электромагнитного излучения после воздействия предыдущей электромагнитной посылки. В результате Попов пришел к оригинальной конструкции устройства для приёма электромагнитных колебаний, тем самым, сделав решающий шаг к созданию системы для передачи и приема сигналов на расстояние.

От опытов в стенах Минного класса Александр Степанович перешел к опытам на открытом воздухе. Здесь он реализовал новую идею: для повышения чувствительности присоединил к приёмному устройству тонкую медную проволоку - антенну. Дальность сигнализации от генератора колебаний (вибратора Герца) до приёмного устройства достигла уже нескольких десятков метров. Успех был полный.

Эти опыты по сигнализации на расстояние, т.е. в сущности, радиосвязь, проводились в начале 1895 г. К концу апреля Попов счел возможным обнародовать их на заседании физического отделения РФХО. Так 7 мая 1895 г. стало днём рождения радио - одного из величайших изобретений XIX века.

Телевидение.

Современное электронное телевидение зародилось в Санкт-Петербурге в проекте преподавателя Технологического института Бориса Львовича Розинга. В 1907 году он оформил патентные заявки в России, Германии и Англии на изобретение телевизионного устройства с электронно-лучевой трубкой (прототипом кинескопа), а 9 мая 1911 года продемонстрировал изображение на экране кинескопа.

"...профессор Розинг,- писал впоследствии В. К. Зворыкин), ассистировал Розингу, а в 1918 году эмигрировал в США, став знаменитым учёным в области телевидения и медицинской электроники), - открыл принципиально новый подход к телевидению, с помощью которого он надеялся преодолеть ограничения систем механической развёртки...".

Действительно, в 1928-1930 гг. в США и в ряде европейских стран началось ТВ вещание с помощь не электронных, а механических систем, позволяющих передавать лишь элементарные изображения с чёткостью (30-48 строк). Регулярные передачи из Москвы по стандарту 30 строк, 12,5 кадра велись на средних волнах с 1 октября 1931 г. Аппаратура разрабатывалась во Всесоюзном электротехническом институте П. В. Шмаковым и В. И. Архангельским.

В начале 30-х годов на зарубежных выставках, а затем и в магазинах стали появляться телевизоры на кинескопах. Однако чёткость изображения оставалась низкой, так как на передающей стороне по-прежнему использовались механические развёртывающие устройства.

В повестке дня важная задача - создание системы, аккумулирующую световую энергию от передаваемого изображения. Первым практически решил эту задачу В. К. Зворыкин, работавший в Американской радио корпорации (RCA). Ему удалось создать, кроме кинескопа, передающую трубку с накоплением зарядов, которую он навал иконоскопом (по-гречески "наблюдать изображение"). Доклад о разработке им с группой сотрудников полностью электронной ТВ системы, с чёткостью около 300 строк, Зворыкин сделал 26 июня 1933 года на конференции общества радиоинженеров США. А через полтора месяца после этого он прочёл свой сенсационный доклад перед учёными и инженерами Ленинграда и Москвы.

В выступлении профессора Г. В. Брауде было отмечено, что у нас А. П. Константинов сделал передающую трубу с накоплением зарядов, похожую по принципу действия на трубку Зворыкина. А. П. Константинов посчитал нужным уточнить: "В моём устройстве в основном применён тот же самый принцип, но неизмеримо изящнее и практичнее сделано это у д-ра Зворыкина..."

Искусственные спутники Земли.

4 октября 1957 года в СССР был запущен первый в мире искусственный спутник Земли. Ракета-носитель доставила спутник на заданную орбиту, наивысшая точка которой находится на высоте около 1000 км. Этот спутник имел форму шара диаметром 58 см и весил 83,6 кг. На нем были установлены 4 антенны и 2 радиопередатчика с источниками питания. Искусственные спутники Земли могут быть использованы в качестве: ретрансляционной станции, для телевидения, значительно расширяющей дальность действия телепередач; радионавигационного маяка.

Коротко...

Сотовые системы были созданы для предоставления услуг беспроводной радиотелефонной связи в интересах большого числа абонентов(десять и более тысяч на территории одного города),они позволяют очень эффективно использовать частотный ресурс. В этом году будет отмечаться 27-летие сотовой связи - это немало для передовой технологии.

Пейджинговые системы предназначены для обеспечения односторонней связи с абонентами путём передачи коротких сообщений в цифровой или алфавитно-цифровой форме.

Оптоволоконные линии связи. Глобальная информационная инфраструктура строится уже давно. Её основой являются оптоволоконные кабельные линии, завоевавшие главенствующие позиции на мировых сетях связи, за истекшие четверть века. Такие магистрали уже опутали большую часть Земли, они проходят и по территории России, и по территории бывшего Советского Союза. Волоконно-оптические линии связи с высокой пропускной способностью, обеспечивают передачу сигналов всех видов (аналоговых и цифровых).

InterNet - это общемировая совокупность сетей, связывающая между собой миллионы компьютеров. Зародышем была распределённая сеть ARPAnet, которая была создана в конце 60-х годов по заказу Министерства Обороны США для связи между собой компьютеров этого министерства. Разработанные принципы организации этой сети оказалось настолько удачными, что многие другие организации стали создавать собственные сети на тех же принципах. Эти сети стали объединяться между собой, образуя единую сеть с общим адресным пространством. Эта сеть и стала называться InterNet.

Использованная литература:

1) Журнал "Радио": 1998г. №3, 1997г. №7, 1998г. №11, 1998г. №2.

2) Радиоежегодник-1985.

4) Большая Советская Энциклопедия.

"Это новое развитие техники несёт неограниченные возможности для добра и зла"

Всё только начинается...

С древних времен человечество искало и совершенствовало средства обмена информацией. На малые расстояния сообщения передавались жестами и речью, на большие-с помощью костров, находящихся друг от друга в пределах прямой видимости. Иногда между пунктами выстраивалась цепочка людей и новости передавались голосом по этой цепочке от одного пункта до другого. В центральной Африке для связи между племенами широко использовали барабаны тамтам.

Идеи о возможности передачи электрических зарядов на расстояния и об осуществлении таким путём телеграфной связи высказывались с середины XVIII века. Профессор Лейпцинского университета Иоган Винклер - именно он усовершенствовал электростатическую машину, предложив натирать стеклянный диск не руками, а подушечками из шелка и кожи, - в 1744 г. писал: "С помощью изолированного подвешенного проводника возможна передача электричества на край света со скоростью полёта пули". В шотландском журнале "The Scot"s Magazine" 1 февраля 1753 г. появилась статья, подписанная только Ч.М. (в последствии выяснилось, что её автор Чарльз Морисон - учёный из г. Ренфрю), в которой впервые была описана возможная система электросвязи. Предлагалось подвесить между двумя пунктами столько неизолированных проволок, сколько букв в алфавите. Проволоки в обоих пунктах прикрепить к стеклянным стойкам, чтобы концы их свисали и заканчивались бузиновыми шариками, под которыми на расстоянии 3-4мм расположить буквы, написанные на бумажках. При касании в пункте передачи кондуктором электростатической машины конца проволоки, соответствующей требуемой букве, в пункте приёма наэлектризованный бузиновый шарик притягивал бы бумажку с этой буквой.

В 1792 г. Женевский физик Жорж Луи Лесаж описал свой проект линии электрической связи, основанной на прокладке 24 медных неизолированных проволок в глиняной трубе, внутри которой через каждые 1,5...2м устанавливались бы перегородки-шайбы из глазурованной глины или стекла с отверстиями для проволок. Последние, таким образом, сохраняли бы параллельное расположение, не соприкасаясь между собой. По одной неподтверждённой, но весьма вероятной версии Лесанж в 1774 г. в домашних условиях провёл несколько удачных опытов телеграфирование по схеме Морисона - с электризацией бузиновых шариков, притягивающих буквы. Передача одного слова занимала 10...15 мин, а фразы 2...3 часа.

Профессор И. Бекман из Карлсруэ в 1794 г. писал: "Чудовищная стоимость и другие препятствия никогда не позволят серьёзно рекомендовать применение электрического телеграфа.

А всего лишь через два года после этого пресовутого "никогда" по проекту испанского медика Франсиско Саьвы военным инженером Августином Бетанкуром была сооружена первая в мире линия электрического телеграфа длиной 42 км между Мадридом и Аранхуэсом.

Ситуация повторилась через четверть века спустя. С 1794 года с начало в Европе, а затем в Америке широкое распространение получил так называемый семафорный телеграф, изобретённый французским инженером Клодом Шаппом и даже описанный Александром Дюма в романе "Граф Монтекристо". На трассе линии строились на расстоянии прямой видимости (8...10 км) высокие башни с шестами типа современных антенн с подвижными перекладинами, взаимное расположение которых обозначало букву, слог или даже целое слово. На передающей станции сообщение кодировалось, и перекладины поочерёдно устанавливались в нужные положения. Телеграфисты последующих станций дублировали эти положения. На каждой башне посменно дежурили двое: один - принимал сигнал от предыдущей станции, другой - передавал его на следующую станцию.

Хотя этот телеграф и послужил человечеству более полувека, он не удовлетворял потребности общества в быстрой связи. На передачу одной депеши затрачивалось в среднем 30 мин. Неизбежно были перерывы связи при дождях, туманах, вьюгах. Естественно, что "чудаки" изыскивали более совершенные средства связи. Лондонский физик и астроном Френсис Рональдс в 1816 г. начал проводить опыты с электростатическим телеграфом. В своём саду, в пригороде Лондона, он соорудил 13-километровую линию из 39 неизолированных проводов, которые подвешивались посредством шелковых нитей на деревянных рамах, установленных через 20 м. Часть линии была подземной - в траншею глубиной 1,2 м и длиной 150 м был уложен деревянный просмоленный желоб, на дне которого были расположены стеклянные трубки с пропущенными в них медными проволоками.

В 1823 г. Рональдс опубликовал брошюру с изложением полученных результатов. Кстати, это был первый в мире печатный труд в области электрической связи. Но когда он предложил свою систему телеграфа властям, Британское Адмиралтейство заявило: "Их светлости вполне удовлетворены существующей системой телеграфа (вышеописанного семафорного) и не намерены заменять её другой".

Буквально через несколько месяцев после открытия Эрстедом эффекта воздействия электрического тока на магнитную стрелку эстафету дальнейшего развития электромагнетизма подхватил знаменитый французский физик, теоретик, Андре Ампер - основоположник электродинамики. В одном из своих сообщений в академии наук в октябре 1820 года он первым выдвинул идею электромагнитного телеграфа. " Подтвердилась возможность, - писал он, - заставить перемещаться намагниченную стрелку, находящуюся на большом расстоянии от батареи, с помощью очень длинного провода". И далее: "Можно было бы... передавать сообщения, посылая телеграфные сигналы по очереди по соответствующим проводам. При этом количество проводов и стрелок должно быть взято равным числу букв в алфавите. На приёмном конце должен находиться оператор, который записывал бы переданные буквы, наблюдая отклоняющиеся стрелки. Если провода от батареи соединить с клавиатурой, клавиши которой были бы помечены буквами, то телеграфирование можно будет осуществлять нажатием клавиш. Передача каждой буквы занимала бы лишь время, необходимое для нажатия клавиш, с одной стороны, и прочтения буквы - с другой стороны".

Не принимая новаторскую идею, английский физик П. Барлоу в 1824 году писал: "В самой ранней стадии экспериментов с электромагнетизмом Ампер предложил создать телеграф мгновенного действия при помощи проводов и компасов. Однако сомнительным было утверждение,... что окажется возможным осуществить указанный проект с проводом длинной до четырёх миль (6,5 км). Произведенные мною опыты обнаружили, что заметное ослабление действия происходит уже при длине провода 200 футов (61 метр), и это меня убедило в неосуществимости подобного проекта".

А всего лишь еще через восемь лет член-корреспондент Российской академии наук Павел Львович Шиллинг воплотил идею Ампера в реальную конструкцию.

Изобретатель электромагнитного телеграфа П. Л. Шиллинг первым понял сложность изготовления на заре электротехники надёжных подземных кабелей и предложил наземную часть проектируемой в 1835-1836 гг. телеграфной линии сделать воздушной, подвесив неизолированный голый провод на столбах вдоль Петергофской дороги. Это был первый в мире проект воздушной линии связи. Но члены правительственного "Комитета для рассмотрения электромагнетического телеграфа" отвергли показавшийся им фантастическим проект Шиллинга. Его предложение было встречено недоброжелательными и насмешливыми возгласами.

А через 30 лет, в 1865 году, когда протяженность телеграфных линий в странах Европы составила 150 000 км, 97% из них приходились на долю линий воздушной подвески.

Телефон.

Изобретение телефона принадлежит 29 - летнему шотландцу, Александру Грехем Беллу. Попытки передачи звуковой информации посредством электричества предпринимались начиная с середины XIX столетия. Едва ли не первым в 1849 - 1854 гг. разрабатывал идею телефонирования механик парижского телеграфа Шарль Бурсель. Однако в действующее устройство свою идею он не воплотил.

Белл с 1873 года пытался сконструировать гармонический телеграф, добиваясь возможности передавать по одному проводу одновременно семь телеграмм (по числу нот в октаве). Он использовал семь пар гибких металлических пластинок, подобных камертону, при этом каждая пара настраивалась на свою частоту. Во время опытов 2 июня 1875 года свободный конец одной из пластинок на передающей стороне линии приварился к контакту. Помощник Белла механик Томас Ватсон, безуспешно пытаясь устранить неисправность, чертыхался, возможно, даже используя не совсем нормативную лексику. Находящийся в другой комнате и манипулировавший приемными пластинками Белл своим чутким натренированным ухом уловил звук, дошедший по проводу. Самопроизвольно закрепленная на обоих концах пластинка превратилась в гибкую своеобразную мембрану и, находясь над полюсом магнита, изменяла его магнитный поток. Вследствие этого поступавший в линию электрический ток изменялся соответственно колебаниям воздуха, вызванным бормотанием Ватсона. Это был момент зарождения телефона.

Устройство называлось "трубкой Белла". Ее следовало прикладывать попеременно то ко рту, то к уху либо пользоваться двумя трубками одновременно.

Радио.

7 мая (25 апреля по старому стилю) 1895 г. произошло историческое событие, которое по достоинству было оценено лишь спустя несколько лет. На заседании физического отделения Русского физико-химического общества (РФХО) выступил преподаватель Минного офицерского класса Александр Степанович Попов с докладом "Об отношении металлических порошков к электрическим колебаниям". Во время доклада А.С. Попов демонстрировал работу созданного им устройства, предназначенного для приёма и регистрации электромагнитных волн. Это был первый в мире радиоприемник. Он чутко реагировал электрическим звонком на посылки электромагнитных колебаний, которые генерировались вибратором Герца.

Иванов Владимир, ученик 7 А класса МБОУСОШ № 63 г. Тулы

Творческие работы учащихся по физике и астрономии

Презентация по физике

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Спутниковая связь и её роль в жизни человека.

Спутниковая связь. Спутниковая связь - один из видов космической радиосвязи, основанный на использовании искусственных спутников земли в качестве ретрансляторов. Спутниковая связь осуществляется между земными станциями, которые могут быть как стационарными, так и подвижными. Спутниковая связь является развитием традиционной радиорелейной связи путем вынесения ретранслятора на очень большую высоту (от десятков до сотен тысяч км.). Так как зона его видимости в этом случае - почти половина Земного шара, то необходимость в цепочке ретрансляторов отпадает - в большинстве случаев достаточно и одного.

С оздания системы спутников связи. В 1945 году в статье «Внеземные ретрансляторы», опубликованной в октябрьском номере журнала «Wireless World», английский учёный, писатель и изобретатель Артур Кларк предложил идею создания системы спутников связи на геостационарных орбитах, которые позволили бы организовать глобальную систему связи. Впоследствии Кларк на вопрос, почему он не запатентовал изобретение (что было вполне возможно), отвечал, что не верил в возможность реализации подобной системы при своей жизни, а также считал, что подобная идея должна приносить пользу всему человечеству.

Гражданская спутниковая связь. Спутник-баллон «Эхо-1 » Первые исследования в области гражданской спутниковой связи в западных странах начали появляться во второй половине 50-х годов XX века. В США толчком к ним послужили возросшие потребности в трансатлантической телефонной связи. 12 августа 1960 года специалистами США был выведен на орбиту высотой 1500 км надувной шар. Этот космический аппарат назывался «Эхо-1». Его металлизированная оболочка диаметром 30 м выполняла функции пассивного ретранслятора.

М еждународная спутниковая связь. 20 августа 1964 года 11 стран (СССР в их число не вошёл) подписали соглашение о создании международной организации спутниковой связи Intelsat. В СССР к тому времени была собственная развитая программа спутниковой связи, увенчавшаяся 23 апреля 1965 года успешным запуском связного советского спутника Молния-1. В рамках программы Intelsat первый коммерческий спутник связи Early Bird (англ.) («ранняя пташка»), произведенный корпорацией COMSAT, был запущен 6 апреля 1965 года.

Спутниковая связь в СССР. В СССР долгое время спутниковая связь развивались только в интересах Министерства обороны СССР. В силу большей закрытости космической программы развитие спутниковой связи в социалистических странах шло иначе, чем в западных странах. Развитие гражданской спутниковой связи началось соглашением между 9 странами социалистического блока о создании системы связи «Интерспутник, « которое было подписано только в 1971 году.

П ассивные спутниковые ретрансляторы. В первые годы исследований использовались пассивные спутниковые ретрансляторы, которые представляли собой простой отражатель радиосигнала (часто - металлическая или полимерная сфера с металлическим напылением), не несущий на борту какого-либо приёмопередающего оборудования. Такие спутники не получили распространения. Все современные спутники связи являются активными. Активные ретрансляторы оборудованы электронной аппаратурой для приема, обработки, усиления и ретрансляции сигнала. Пассивный спутник связи Echo-2.

Системы множественного доступа. Для обеспечения возможности одновременного использования спутникового ретранслятора несколькими пользователями применяют системы множественного доступа: 1. М ножественный доступ с частотным разделением - при этом каждому пользователю предоставляется отдельный диапазон частот. 2. М ножественный доступ с временным разделением - каждому пользователю предоставляется определенный временной интервал (таймслот), в течение которого он производит передачу и прием данных. 3. Множественный доступ с кодовым разделением - при этом каждому пользователю выдается кодовая последовательность, ортогональная кодовым последовательностям других пользователей. Данные пользователя накладываются на кодовую последовательность таким образом, что передаваемые сигналы различных пользователей не мешают друг другу, хотя и передаются на одних и тех же частотах.

Подвижная спутниковая связь. Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала. Для того чтобы мощность сигнала, достигающего приемника, была достаточной, применяют одно из двух решений: 1. Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Этот подход используется системой Inmarsat и некоторыми региональными операторами персональной спутниковой связи (например, Thuraya). 2. Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов. Подобный метод используется операторами Iridium и Globalstar.

Спутниковый Интернет. Спутниковая связь находит применение в организации «последней мили» (канала связи между Интернет-провайдером и клиентом), особенно в местах со слабо развитой инфраструктурой. Особенностями такого вида доступа являются: 1. Разделение входящего и исходящего трафика и привлечение дополнительных технологий для их совмещения. Поэтому такие соединения называют асимметричными. 2. Одновременное использование входящего спутникового канала несколькими пользователями: через спутник одновременно передаются данные для всех клиентов «вперемешку», фильтрацией ненужных данных занимается клиентский терминал.

Спутниковый Интернет часть 2. По типу исходящего канала различают: 1.Терминалы, работающие только на прием сигнала (наиболее дешевый вариант подключения). В этом случае для исходящего трафика необходимо иметь другое подключение к Интернету, поставщика которого называют наземным провайдером. Для работы в такой схеме привлекается туннелирующее программное обеспечение, обычно входящее в поставку терминала. Несмотря на сложность (в том числе сложность в настройке), такая технология привлекательна большой скоростью по сравнению с dial-up за сравнительно небольшую цену. 2. Приемо-передающие терминалы. Исходящий канал организуется узким (по сравнению со входящим). Оба направления обеспечивает одно и то же устройство, и поэтому такая система значительно проще в настройке.Такая схема требует установки на антенну более сложного (приемо-передающего) конвертера. И в том, и в другом случае данные от провайдера к клиенту передаются, как правило, в соответствии со стандартом цифрового вещания DVB, что позволяет использовать одно и то же оборудование как для доступа в сеть, так и для приема спутникового телевидения.

Заключение. Спутниковая связь важна в жизни человека. Без неё трудно представить себе жизнь современных людей. Спутниковая связь обеспечивает нам постоянный доступуп в сеть, спутниковому телевидению и многому другому.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: