Теоретические основы измерительных и информационных технологий. Обобщенная структура канала связи

«Многоканальная связь на ж. д. транспорте»

Конспект лекций

для студентов V курса

специализация СПИ

1. Общие сведения о системах и сетях телекоммуникаций. 2

1.1. Основные понятия и определения. 2

1.2. Первичные и вторичные сети. 3

1.3. Классификация и перспективы развития МСП.. 4

2. Параметры типовых первичных сигналов. 6

2.1. Обобщенная система параметров первичного сигнала. 6

2.2. Основные параметры типовых первичных сигналов. 9

2.2.1. Телефонный сигнал . 9

2.3.3. Факсимильный сигнал. 12

2.3.4. Сигнал дискретной информации (СДИ) 12

2.3.5. Телевизионный сигнал. 12

3. Принципы временного уплотнения сигналов. 13

3.1. Общие принципы формирования основного цифрового канала. 13

3.2. Временное объединение аналоговых сигналов. 13

. 14

. 15

3.3. Объединение цифровых потоков. 18

3.3.1. Посимвольное синхронное объединение . 18

3.3.2. Объединение асинхронных цифровых потоков . 21

3.3.3 Процедура согласования скоростей . 23

4. Плезиохронная цифровая иерархия. 27

4.1. Стандарты плезиохронной иерархии. 27

4.2. Группообразование с двухсторонним согласованием скоростей. 31

4.2.1. Временное группообразование вторичного цифрового сигнала . 31

4.2.2. Временное группообразование третичного и четверичного цифрового сигнала . 32

4.3. Группообразование с односторонним согласованием скоростей. 34

5. СИСТЕМА ПЕРЕДАЧИ Е1. 38

5.1. Физический уровень Е1. 38

5.1.1 Линейное кодирование . 39

5.1.2 Уровни сигналов, электрические параметры интерфейса, форма импульса . 41

5.2. Канальный уровень Е1. 43

5.2.1. Цикловая и сверхцикловая структура Е1 . 43

5.2.2. Процедуры контроля ошибок передачи. Использование избыточного кода CRC-4 . 45

5.3. Сетевой уровень Е1. 47

5.4. Структура систем передачи Е1. 49

6. Синхронная цифровая иерархия. 51

6.1. Сравнение SDH и PDH.. 51

6.2. Особенности построения синхронной иерархии. 52

6.3. Сборка модулей STM-N.. 54

6.4. Правила образования транспортного модуля STM-1. 55

6.5. Процесс формирования модуля STM-1 из потока трибов Е1. 57

6. 6. Назначение заголовков и указателей. 61

6.7. Особенности технической реализации синхронных муьлтиплексоров. 62

6. 8. Методы контроля четности. 64

6. 9. Резервирование. 65


1. Общие сведения о системах и сетях телекоммуникаций

1.1. Основные понятия и определения

Многоканальные системы передачи представляют собой большие и сложные технические системы, которые воплощают в себе самые современные знания и технологии, полученные в разных областях науки и техники. Чтобы дать компактное и в то же время исчерпывающее описание этих систем, нужно использовать общепринятые (желательно согласованные на международном уровне) термины и определения различных объектов, процессов и устройств, относящихся к этой области.

Информацией называют совокупность сведений, данных о каких-либо событиях, явлениях или предметах окружающего нас мира. Для передачи или хранения информации используют различные знаки (символы), которые являются своеобразной формой представления информации. Такими знаками могут быть слова и фразы человеческой речи на том или ином языке, буквы и слова письменной речи, жесты и рисунки, математические и нотные знаки и т. п. Совокупность знаков, отображающих ту или иную информацию, называют сообщением.

Сообщение может иметь электрическую или неэлектрическую природу. В большинстве случаев интерес представляют сообщения неэлектрической природы. Источник и получатель сообщений разделены некоторой средой, в которой источник образует возмущения. Именно эти возмущения отображают сообщения и воспринимаются получателем. Например, при разговоре источником сообщений является голосовой аппарат человека, в качестве сообщения выступает изменяющееся в пространстве и во времени воздушное давление – акустические волны, а получателем служит человеческое ухо.

Процесс передачи (транспортирования) сообщения от источника к получателю в соответствии с принятыми правилами называют связью. При этом используют какой-либо материальный носитель сообщения (бумагу, магнитную ленту и т. д.) и/или физический процесс, отображающий (несущий) передаваемое сообщение. Последний называют сигналом. Тип сигнала определяется характером физического процесса передачи информации. Сигнал называют электрическим, если физический процесс представляет собой передачу электрического тока (напряжения), звуковым – если используется передача акустических колебаний и т. д.

Совокупность средств, обеспечивающих передачу сообщений от источника к получателю, образует канал связи.

Передача сообщений посредством электрических сигналов называется электросвязью, соответственно канал связи, который обеспечивает такую передачу, – каналом электросвязи.

Для передачи каких-либо сообщений неэлектрической природы по каналу электросвязи они должны подвергнуться определенным преобразованиям, которые выполняют первичные преобразователи сообщений (ППС). ППС представляет собой устройство, которое формирует в пункте передачи первичный электрическийсигнал (ПЭС) – электромагнитное колебание, изменение параметров которого соответствует сообщению неэлектрической природы. Примерами ПЭС являются телефонный, телеграфный, телевизионный, сигнал звукового вещания и другие сигналы. В качестве типовых ППС можно назвать микрофон, фотодиод, телевизионную передающую камеру и т. д.

Первичный электрический сигнал может передаваться непосредственно по физической цепи, содержащей пару металлических проводников, но, как правило, ПЭС подвергается дополнительным преобразованиям. Например, для передачи по волоконно-оптической линии связи ПЭС преобразуется в определенного вида оптический сигнал, для направленной передачи в открытом пространстве – в высокочастотный радиосигнал и т. д. На приемной стороне осуществляются обратные преобразования и снова восстанавливается ПЭС. Далее он поступает на обратный преобразователь сообщения (ОПС) – устройство, которое преобразует электрический сигнал в сообщение неэлектрической природы. Типовыми ОПС являются громкоговоритель, светодиод, кинескоп телевизора и др.

Различные виды электросвязи классифицируют либо по типу передаваемых ПЭС (например, телефонная, видеотелефонная, телеграфная, факсимильная, телевизионная и т. п.), либо по типу линии передачи (спутниковая, волоконно-оптическая, радиорелейная и т. п.), если канал электросвязи является универсальным.

Системой электросвязи называют совокупность технических средств и среды распространения, обеспечивающих передачу сигналов электросвязи. В качестве среды распространения используют проводные и беспроводные линии (или радиолинии).

Проводными называются линии, в которых электромагнитные сигналы распространяются в пространстве вдоль непрерывной направляющей среды. К проводным относятся металлические воздушные и кабельные линии, волноводы, световоды. В радиолиниях сообщения передаются посредством радиоволн в открытом пространстве. Этот вид связи обеспечивает большую дальность, пригоден для подвижных источников и получателей сообщения, но зато в большей степени подвержен воздействию внешних помех.

1.2. Первичные и вторичные сети

Понятия "первичные и вторичные сети" были одними из основных в терминологии Взаимоувязанной сети связи (ВСС) России (а до этого – в терминологии ЕАСС) и определяли архитектуру ее построения.

Под первичной сетью понимается совокупность типовых физических цепей, типовых каналов передачи и сетевых трактов, образованных на базе сетевых узлов, сетевых станций, оконечных устройств первичной сети и соединяющих их линий передачи.

Вторичная сеть определяется как совокупность линий и каналов вторичной сети, образованных на базе первичной сети, станций и узлов коммутации или станций и узлов переключений, предназначенная для организации связи между двумя определенными точками или более. Границами вторичной сети являются ее стыки с абонентскими оконечными устройствами. В зависимости от основного вида электросвязи вторичную сеть называли телефонной, телеграфной, передачи данных, сетью распространения программ телевизионного вещания, передачи газет и др. По территориальному признаку вторичные сети разделяли на междугородные и зоновые (внутризоновые и местные).

На базе вторичных сетей организуются системы, представляющие собой комплекс технических средств, осуществляющих электросвязь определенного вида и включающие в себя соответствующую вторичную сеть и подсистемы: нумерации, сигнализации, учета стоимости и расчета с абонентами, технического обслуживания и управления.

На современном этапе, с появлением новых услуг связи , помимо телефонной, с появлением большого количества независимых провайдеров, которые эти услуги поставляют, а также таких технологий как АТМ и MPLS и других, стандарты которых захватывают как первичную, так и вторичные сети передачи информации границы между первичными и вторичными сетями постоянно стираются.

Бурное развитие современных технологий приводит к тому, что нормативная база резко отстала от существующего положения на сетях.

На сегодняший момен, на мой взгляд, следует остановиться на следующих определениях: следует оставить понятие первичной сети, как транспортной сети (линии передачи с оконечным оборудованием); вторичная сеть – сеть услуг (телефонная связь, передача данных и т. д.)

1.3. Классификация и перспективы развития МСП

Многоканальные системы передачи (МСП) представляют собой комплекс технических средств, обеспечивающих одновременную и независимую передачу нескольких сигналов с требуемым качеством по одной линии передачи. МСП классифицируются по следующим признакам.

1. По виду направляющей среды: проводные и беспроводные.

В свою очередь различают: а) проводные по воздушным линиям – ВСП; по кабельным линиям – КСП; по волоконно-оптическим линиям – ВОСП; б) беспроводные по радиорелейным линиям передачи – РРСП; по спутниковым линиям – ССП.

2. По числу источников сообщений (числу каналов N): а) малоканальные – N< 12 (обычно по воздушным линиям связи); б) среднеканальные – N= 12 – 60 (обычно КСП по симметричным кабелям или РРСП); в) многоканальные – N > 300 (обычно КСП по коаксиальным кабелям или РРСП, а также ВОСП); г) сверхмногоканальные – N >> 3000 (только ВОСП или КСП по «большим» коаксиальным кабелям, например система К-3600).

Для унификации МСП число источников сообщений (каналов) определяют по числу эквивалентных телефонных сообщений, которые могут быть переданы в МСП.

3 По форме передаваемых сигналов: а) аналоговые (АСП) – используемые для передачи аналоговых электрических сигналов, которые за конечный интервал времени могут принимать бесконечное множество состояний (рис. 1.4,а). Примером таких АСП являются системы типа В-12, К-1920 и т. п.; б) дискретные – используемые для передачи дискретных сигналов, которые на конечном интервале времени имеют конечное (дискретное, счетное) число состояний (рис. 1.4,б); в) цифровые (ДСП) – используемые для передачи цифровых сигналов, которые дискретны по времени и имеют два разрешенных уровня «1» и «0» мгновенных значений (рис. 1.4,в). Примером ЦСП является аппаратура типа ИКМ-30, ИКМ-1920 и т. п.

Рис. 1.4 а. Рис. 1.4 б. Рис. 1.4 в.

Основные тенденции развития МСП:

1. постоянный и неуклонный переход от АСП к ЦСП;

2. преимущественное развитие ВОСП, особенно магистральных с большим числом каналов;

3. увеличение доли ССП;

4. повышение надежности, улучшение качественных показателей МСП.

2. Параметры типовых первичных сигналов

2.1. Обобщенная система параметров первичного сигнала

Спектральная плотность Gx(f) случайного процесса характеризует распределение мощности отдельных спектральных компонент сигнала x(t) . Если сигнал x(t) периодический, то функция Gx(f) дискретна; если сигнал x(t) непериодический, то функция Gx(f) непрерывна.

Передать сигнал без искажений, не передавая его спектр, невозможно. Любое сокращение спектра, допущенное при передаче, ведет к искажению сигнала.

Все реально существующие сигналы связи представляют собой случайные процессы с бесконечно широким спектром. При этом, основная энергия сосредоточена в относительно узкой полосе частот. Поскольку передать весь спектр сигнала невозможно, то по линии связи передают ту часть спектра сигнала, в которой сосредоточена основная энергия, и при этом искажения не превышают допустимых значений.

На рисунке 2.1 приведены характерные зависимости Gx(f) :

Рис. 2.1. Характерные зависимости спектральной плотности Gx(f) :

а) для случая, когда спектр сигнала сосредоточен в основном в полосе частот Fн < f < Fв, где Fн, Fв – нижние и верхние граничные частоты (рис. 2.1 а);

Если Fв/Fн >> 1, то сигнал считается широкополосным; при Fв/Fн ≈ 1 – узкополосным.

б) когда 0 < f < Fв т. е. Fн = 0 (рис. 2.1, б);

в) когда сигнал имеет бесконечно широкий и равномерный спектр, этот вариант является удобной математической моделью и соответствует условному сигналу, называемому «белым шумом» (рис. 2.1, в).

Ширина спектра сигнала, равная разности максимальной и минимальной частот передаваемого спектра ΔF=FВ – FН является одной из важнейших его характеристик.

Мощность сигнала, усредненную на интервале времени T → ∞ называют средней долговременной мощностью Рх. ср. Если T конечно, например 1 минута или 1 час, то получим среднеминутную или среднечасовую мощность. Наконец, при T → 0 получим мгновенное значение мощности сигнала Рх в момент t0.

Поскольку x(t) – случайный процесс, то строго теоретически в отдельные моменты времени выбросы сигнала x(t) и соответственно мгновенное значение мощности Px(t) (усредненной за малый интервал ΔT) могут быть очень большими. Обычно за максимальную мощность сигнала принимается такая величина Px max = Xmax2, превзойти которую мгновенное значение Px может только с очень малой вероятностью ε. Обычно ε = 0,01 или 0,001.

Пик-фактор сигнала – это отношение его максимальной мощности Pmax, определенной выше, к средней долговременной Pср, выраженной в логарифмических единицах (децибелах):

.

Для большинства сигналов Кп не превышает 13 – 18 дБ.

В процессе передачи сигнал x(t) по тем или иным причинам (иногда и сознательным) искажается в результате к получателю поступает сигнал x’(t) ≠ x(t). Ошибка воспроизведения сигнала x(t) оценивается мощностью ошибки Pε, определяемой в виде

Получатель не замечает искажений сигнала, если Pε не превышает некоторо допустимогоо (порогового) значения Pε max. Под динамическим диапазоном понимается величина

, дБ,

где Pmax – максимально возможная мощность сигнала.

Также динамический диапазон определяется как отношение максимальной (пиковой) мощности Рс max сигнала к его минимальной мощности Рс min , выраженное в логарифмических единицах. Под пиковой мощностью понимается мощность сигнала, превышаемая в течение определенного времени. Динамический диапазон сигнала при использовании системы десятичных логарифмов

Динамический диапазон речевых сигналов составляет 35 – 40 дБ.

В реальных условиях сигналы связи передаются по линиям передачи, в которых действуют различного рода помехи. Поэтому наиболее важным является не абсолютное значение мощности сигнала, а ее соотношение с мощностью помехи. Из этих соображений обычно рассматривается и нормируется особая величина – защищенность сигнала от того или иного вида помехи.

Под защищенностью понимается разность уровней сигнала и помехи в данной точке канала связи:

Информационная производительность источника определяется отношением количества информации ИΣ, переданной с помощью ПЭС к получателю (приемнику) за время tΣ, к величине интервала tΣ:

При tΣ → ∞ величина I определяет среднюю информационную производительность источника; если tΣ мало, то тогда I характеризует мгновенную информационную производительность.

Найдем количество информации для источника дискретного сигнала, имеющего L разрешенных состояний (уровней) (рис. 2.2).

На интервале ti < t< ti+1 сигнал принимает i-й уровень (i Є ) с вероятностью pi..jpg" width="195" height="43">

Тогда производительность дискретного источника будет равна

где Тп – длительность элементарной посылки (рис. 2.2), FТ = 1/Tп – частота следования посылок (тактовая частота).

Пример. Пусть вероятность принятия i – го уровня одинакова для всех i Є ,

Подставляя значение pi находим

Если сигнал имеет два разрешенных уровня («0» и «1»), т. е. L = 2, причем p0 = p1 = 0,5, то получим для цифрового сигнала

Т. е. информационная производительность источника двоичного сигнала совпадает с его тактовой частотой. Например, информационная производительность источника основного цифрового канала (ОЦК), тактовая частота которого равна 64 кГц, будет равна 64 кБит/с.

Для аналогового сигнала

где величины FВ, Рср и Рε max определялись выше; D* и Кп* - соответственно динамический диапазон и пик-фактор сигнала, выраженные в разах (а не в дицибелах).

Если можно принять, что D*/K* >> 1, то тогда из предыдущей формулы имеем

Здесь D и Кп подставляются в децибелах, FВ – в герцах.

2.2. Основные параметры типовых первичных сигналов

2.2.1. Телефонный сигнал

Усредненная спектральная плотность (синоним – энергетический спектр) речевого сигнала, получаемого на выходе микрофона телефонного аппарата, показана на рис. 2.3.

Спектр сосредоточен в основном в пределах от 0,3 до 3,4 кГц. Это обусловлено, в первую очередь, параметрами первичных абонентских преобразователей – микрофона и телефона. Максимум спектра соответствует частоте F0, которая для мужских и женских голосов изменяется в пределах от 300 до 500 Гц.

Плотность распределения уровней абонентов на входе многоканальных систем передачи примерно описывается нормальным законом (рис. 2.4).

В зависимости от того, в какой точке системы будет измеряться это распределение, функция W(p) параллельно сместится по оси уровней р. Максимум ее соответствует уровню рср для некоторого среднего абонента в этой точке. Как правило, указывается функция W(p), приведенная ко входу системы (обычно точка нулевого относительного уровня ТНОУ):

Разброс уровней относительно рср не зависит от точки измерения и характеризуется дисперсией σр , которая равна 4,5 ... 5,5 дБ. Для нормального закона справедливо правило «трех сигм», в соответствии с которым максимальный уровень абонента pmax с вероятностью 99,9% равен pmax < (рср + З σр ).

Отношение средней мощности сигнала Рср к мощности той максимальной ошибки Рε, которую еще не чувствует ухо в условиях разговора, для всех абонентов, как показывает эксперимент, составляет

То же можно сказать и о пик-факторе любого абонентского сигнала, который равен Кп ≈ 15 – 17 дБ.

Тогда динамический диапазон сигнала равен

При оценке информационной производительности источников телефонного сигнала по ((номер формулы производительности для аналогового источника)) необходимо учесть, что каждый абонент говорит в среднем половину времени, отводимого для диалога с другим абонентом. Кроме того, значительная доля времени уходит на паузы, обдумывание ответов и т. п. За счет указанных факторов производительность источника сообщений уменьшается в среднем в 3 – 4 раза, что учитывается коэффициентом активности τа = З-1 Тогда используя формулу для информационной производительность источника аналогового сигнала, получи

2.2.2. Сигнал звукового вещания

Источниками звука при передаче программ звукового вещания (ЗВ) обычно являются музыкальные инструменты и голос человека. В качестве первичных преобразователей сигнала ЗВ используются высококачественные широкополосные микрофоны и громкоговорители, способные в принципе передать весь спектр звуков, которые может слышать человеческое ухо. Частотный спектр сигнала вещания расположен в полосе частот от 15 доГц. Однако в зависимости от требований к качеству воспроизведения полоса частот может быть ограничена:

для передачи по высшему классу - FH = 0,02 кГц, FB = 15 кГц;

по первому классу - FH = 0,05 кГц, FB = 10 кГц;

по второму классу - FH = 0,1 кГц, FB = 6 кГц.

Как правило, по международным магистралям международные и республиканские программы ЗВ передаются по 1-му классу, местные распределительные сети ЗВ обычно обеспечивают качество передачи по 2-му классу, аппаратура студий и домов звукозаписи рассчитывается на передачу сигнала ЗВ по высшему классу.

Допустимая ошибка воспроизведения сигнала ЗВ, оцениваемая величиной

101g(Pcp/ Pε), дБ, находится путем профессиональной экспертизы при использовании высококачественной аппаратуры (первичных преобразователей). Она составляет примерно 54 – 56 дБ. Пик-фактор сигнала ЗВ равен 16 – 18 дБ. Соответственно динамический диапазон на основании равен D = 70 – 74 дБ. Определяем производительность источника сигнала ЗВ:

https://pandia.ru/text/78/323/images/image025_36.jpg" width="350" height="48 src=">

При использовании факсимильной аппаратуры «Газета-2», применяемой для передачи газетных полос по междугородным линиям связи, наивысшая частота рисунка равна 180 кГц при времени передачи одной полосы 2,3 .... 2,5 мин. Изображение газетной полосы является растрированным (штриховым) с числом уровней L = 2. Тогда

DIV_ADBLOCK156">

Скорость передачи оценивают или частотой fТ = 1/τи, или числом элементарных символов за 1 с в бодах (1 Бод соответствует передаче одного символа в секунду). По этому параметру источники дискретной информации делят на низкоскоростные (в их числе и телеграфные), которые имеют скорость не более 200 Бод, среднескоростные – от 300 до 1200 Бод и высокоскоростные – более 1200 Бод.

2.3.5. Телевизионный сигнал.

В телевидении, так же как и при факсимильной связи, первичный сигнал формируется методом развертки. Электрический сигнал, включающий в себя сигнал изображения и управляющие импульсы, называется полным телевизионным сигналом. Для сигнала вещательного телевидения характерно D = 40 дБ, FB = 6,0 МГц.

3. Принципы временного уплотнения сигналов

3.1. Общие принципы формирования основного цифрового канала

Как известно, при переходе из аналоговой формы в цифровую сигнал претерпевает следующие преобразования (рис. 3.1.):

Рис. 3.1. Преобразование аналогового сигнала в цифровой ИКМ-сигнал

Дискретизация индивидуальных сигналов по времени, в результате чего формируется импульсный сигнал, промоделированный по амплитуде, т. е. АИМ сигнал;

Объединения N индивидуальных АИМ сигналов в групповой АИМ сигнал с использованием принципов временного разделения каналов;

Квантования группового АИМ сигнала по уровню;

Последовательного кодирования отсчетов группового АИМ сигнала, в результате чего формируется групповой ИКМ сигнал, т. е. цифровой сигнал.

Таким образом, при частоте дискретизации FД=8кГц (TД=125 мкс) и разрядности кода m=8 получаем скорость передачи сформированного ИКМ-сигнала 64 кбит/с, которая и является скоростью основного цифрового канала (ОЦК). Преобразование аналогового сигнала в сигнал ИКМ стандартизировано МСЭ-Т Рекомендацией G-711.

3.2. Временное объединение аналоговых сигналов

При временном уплотнении сигналов их передача осуществляется дискретно во времени. При этом между соседними дискретами одного сигнала всегда имеются «временные окна», в которых нет передачи этого сигнала. Эти «окна» и заполняются дискретами других сигналов. В зависимости от того, в какой форме представлен дискрет каждого сигнала, возможны два вида временного уплотнения:

а) уплотнение сигналов в аналого-импульсной форме;

б) уплотнение сигналов в цифровой форме.

3.2.1. Общие принципы объединения аналоговых сигналов

При временном объединении аналоговых сигналов (рис. 3.2) каждый из сигналов многоканальной системы a 1 (t ) ÷ an (t ) (рис. 3.3, а, в) предварительно преобразуется из аналоговой формы в сигнал АИМ-1 или АИМ-2.

Рис. 3.2

Формирование АИМ-сигналов производится с помощью дискретизаторов (см. рис. 3.24), которые управляются соответствующими импульсами коммутации U д1 ÷ U дn . Поскольку эти сигналы являются ортогональными (непересекающимися) во времени (см. рис. 3.25, б, г), то дискреты сигналов a д1 (t ) ÷ a дn (t ) также не совпадают во времени и их можно непосредственно объединить в групповой сигнал U гр(t) с помощью линейного сумматора 2 (рис. 3.25, д). Формирование сдвинутых во времени последовательностей импульсов U д1 ÷ U дn осуществляется с помощью генераторного оборудования (ГО) 3. Оно же с помощью передающего устройства синхросигналов 4 формирует специальный сигнал синхронизации, который объединяется с выборками информационных сигналов a 1 (t ) ÷ an (t ) . Элементарный цикл передачи в многоканальной системе строится по принципу: передается выборка 1-го канала, 2-го и т. д. до n-го, затем передается синхросигнал; потом снова выборки 1-го, 2-го канала и т. д.

На приемной стороне (рис. 3.4) дискретизаторы 11 – 1n осуществляют выделение из группового сигнала выборок только «своих» каналов. После канального фильтра 3i , i = 1, ...,n происходит восстановление непрерывного сигнала a i (t) из дискретизированного a дi (t ) ,.

Канальные дискретизаторы на передающей и приемной сторонах должны работать синхронно и синфазно. Для этого применяется принудительная синхронизация приемной части. Она выполняется с помощью специального приемника синхросигнала 2, который из группового сигнала выделяет сигнал синхронизации и подает его на генераторное оборудование приема 4. Для безошибочного выделения синхросигнала последнему придаются специфические признаки, отличающие его от информационных выборок. Отличием может быть амплитуда, длительность, форма и т. п. ГО передачи и приема строятся почти одинаково, только задающий генератор на стороне передачи работает в автономном режиме, а на стороне приема – в режиме – принудительной синхронизации. Преимущества такого варианта временного уплотнения заключаются в следующем:

1) для всех каналов используется общее ГО;

2) все сигналы дискретизируются с одной частотой, что позволяет использовать однотипные дискретизаторы и канальные фильтры;

3) аналого-цифровое преобразование (операции квантования по уровню и кодирования) выполняются одним групповым квантователем и кодирующим устройством;

4) цифро-аналоговое преобразование с на приемной стороне осуществляется одним I групповым декодером, который формирует групповой дискретизированный сигнал вида рис. 3.25, д.

3.2.2. Система передачи ИКМ-30

Такой вариант временного уплотнения применяется в первичных цифровых системах передачи типа ИКМ-30. Цикл передачи в этих системах поясняется на рис. 3.5.

Период цикла Tц равен периоду дискретизации телефонного сигнала Tд = 125 мкс (поскольку Fд = 8 кГц).


В интервале Тц последовательно передаются в цифровом двоичном коде выборки 30 телефонных сигналов и два служебных цифровых сигнала: цикловой синхронизации (ЦС) и сигналов управления и взаимодействия для АТС (СУВ). Каждая выборка передается в своем канальном интервале (КИ), имеет длительность кодовой комбинации Тк и состоит из m разрядов. Длительность разряда – Тт. При m = 8 получим

Канальные интервалы, нумеруемые цифрами 0, 1, 2, ..., 31, используются следующим образом: КИ0 – для передачи сигнала ЦС, КИ16 – СУВ, интервалы КИ1÷КИ15 и КИ17÷ КИ31 – для передачи соответственно 1 – 15-го и 16 – 31-го телефонных сигналов. Передача СУВ осуществляется путем организации «вынесенного сигнального канала» в отличие от большинства АСП, где СУВ передается в том же канале, что и информационный сигнал. В первичной ЦСП выборка СУВ одного абонента передается в виде 3-разрядной кодовой комбинации, при этом в одном КИ16 размещаются выборки СУВ двух абонентов. Для передачи по одному разу выборок всех 30 абонентов потребуется время Тсц = Тц (30/2 + 1) = 16 Тц = 2 мс, которое называется сверхциклом, при этом один из КИ16 в сверхцикле используется для передачи цифрового сигнала сверхцикловой синхронизации (СЦС). С помощью сигнала СЦС на приемной стороне производится разделение кодированных выборок СУВ отдельных каналов. Структурная схема приемника СУВ практически аналогична рис. 3.4.

Основными недостатками рассмотренного варианта временного уплотнения являются следующие:

1) с ростом числа объединяемых сигналов уменьшается интервал времени между соседними выборками (см. рис. 3.3, д), за которое групповой кодер (или декодер) должен произвести преобразование в цифровой сигнал (и обратно), в силу чего усложняется реализация этих групповых устройств;

Методы и модели анализа непрерывных каналов разрабатывают на основании изучения физических и статистических характеристик реальных каналов. Так как непрерывные каналы являются основной составной частью всех других каналов, результаты анализа непрерывных каналов широко используют для решения задач анализа и синтеза систем, сетей связи и других объектов информационной техники. Основными задачами анализа непрерывных каналов являются анализ линейных и нелинейных искажений сигналов в каналах и анализ влияния ттомех (в каналах.

4.1.1. Анализ искажений сигналов. Для анализа искажений сигналов в каналах необходимо располагать сведениями о характеристиках входных сигналов, структуре и параметрах операторов преобразования сигналов в канале и изучать характеристики выходных сигналов. Характеристики входных сигналов определяют как характеристики модулированных сигналов (см. § 3.2-3.6). Структуру и параметры операторов преобразования сигналов в канале определяют на основе построения математических моделей каналов (см. п. 4.1.3). Прохождение сигналов через каналы и характеристики выходных сигналов обычно изучают методами теории радиотехнических цепей и статистической радиотехники .

При строгом рассмотрении реальные непрерывные каналы являются нелинейными инерционными стохастическими системами . В них реакция на выходе не может предшествовать воздействию на входе, поэтому такие системы часто называют динамическими, Анализ таких систем представляет сложную задачу. Ее решение еще более усложняется, когда в роли входных воздействий выступают случайные модулированные сигналы. Для приближенного решения задач анализа искажений непрерывный канал, как уже отмечалось в § 1.3, удобно рассматривать как последовательное соединение линейной инерционной системы и нелинейной, но безынерционной системы. На рис. 4.1 показана структурная схема непрерывного канала без помех, где линейная-инерционная система представлена полосовым фильтром а нелинейная безынерционная система - нелинейным

преобразователем . В статистической радиотехнике показано, как анализируют прохождение случайных сигналов через такие системы.

Линейные искажения сигналов появляются в линейном инерционном четырехполюснике с постоянными параметрами из-за наличия в нем реактивных элементов. При линейных искажениях нарушаются существующие частотные и фазовые соотношения между отдельными составляющими сигнала и форма сигналов. Для отсутствия искажений необходимо, чтобы модуль коэффициента передачи и время запаздывания для всех составляющих были одинаковы. Нелинейными называют искажения сигналов, которые возникают в нелинейных безынерционных четырехполюсниках с постоянными параметрами из-за нелинейности характеристик активных элементов: ламп, транзисторов и др.

Рис. 4.1. Эквивалентная схема непрерывного канала без помех

Рис. 4.2. Эквивалентная схема непрерывного капала с помехами

В результате нелинейных искажений спектры сигналов расширяются, в них появляются дополнительные компоненты, растут уровни взаимных помех в каналах.

4.1.2. Помехи в непрерывных каналах. Для рассмотрения помех в непрерывных каналах выходной сигнал представляют в виде

где входной сигнал; соответственно мультипликативная и аддитивная помехи; задержка сигнала в канале. Структурная схема непрерывного канала с помехами показана на рис. 4.2.

Мультипликативные помехи обусловлены случайными изменениями коэффициента передачи канала из-за изменения характеристик среды, в которой распространяются сигналы, и коэффициентов усиления схем при изменении питающих напряжений, из-за замираний сигналов в результате интерференции и различного затухания сигналов при многолучевом распространении радиоволн . Сущность физических явлений, вызывающих мультипликативные помехи, подробно рассмотрена в . Мультипликативные помехи бывают «медленные», когда

и «быстрые», когда

где интервал корреляции случайного процесса интервал корреляции или длительность сигнала, если он рассматривается как детерминированный.

Если сигнал включает ряд спектральных компонент и интервал корреляции или длительность компоненты сигнала, то в зависимости от значения отношения различают общие и селективные мультипликативные помехи (замирания сигналов). Если

то мультипликативную помеху называют общей. Если это отношение различно для различных компонент, то помеху называют селективной. Если случайный сигнал может быть представлен в виде тригонометрического ряда Фурье (2.45), то в роли выступает период гармоники

Аддитивные помехи обусловлены флуктуационными явлениями, связанными с тепловыми процессами в проводах, резисторах, лампах, транзисторах и других элементах схем, наводками под действием атмосферных явлений (грозовые, разряды, космическое излучение, магнитные бури и т. п.) и индустриальных процессов (работа промышленных установок, линий электропередач, радиостанций, других линий связи и т. п.).

Аддитивные помехи делят на сосредоточенные и флуктуационные. Сосредоточенные аддитивные помехи отличаются сосредоточенностью энергии помехи и полосе частот (узкополосные помехи) или на отрезке времени (импульсные помехи). Узкогтолосные помехи в основном обусловлены действием посторонних источников сигналов - ширина спектра этих помех сравнима или значительно меньше ширины спектра полезных сигналов. Узкополосные помехи как помехи от соседних станций характерны для радиосвязи. Статистические свойства узкополосных помех носят такой же характер, как и у полезных сигналов. Борьба с узкополосными аддитивными помехами ведется методами повышения избирательности радиоприемных устройств и улучшения линейности характеристик усилителей (нелинейные преобразования помех приводят к расширению их спектра, что вызывает появление частотных компонент помехи в полосе прозрачности систем, отведенной для приема полезных сигналов).

Импульсные помехи - это случайные последовательности импульсов, создаваемые промышленными установками и атмосферными источниками сигналов. Эти помехи характеризуются широким энергетическим спектром. Ширина их спектра, как известно, обратно пропорциональна длительности импульсов. Энергия спектральных составляющих импульсных помех падает в области сверхнизких и сверхвысоких частот. Это является одной из причин все более широкого использования радиоволн метрового, дециметрового и сантиметрового диапазонов.

Понятие сосредоточенности энергии помехи относительно. Поэтому для определенности сосредоточенными аддитивными помехами следует считать те, для которых

где соответственно ширина спектра и длительность помехи; - ширина спектра и длительность сигнала. Первое соотношение в (4.4) определяет узкополосную помеху, второе - импульсную.

Флуктуационная аддитивная помеха характеризуется «размытостью» энергии спектра в широком диапазоне частот. Она обусловлена главным образом внутренними шумами элементов аппаратуры (тепловые шумы, дробовой эффект в электровакуумных приборах и т. п.). Средняя мощность теплового шума в полосе частот полезного сигнала определяется по формуле

спектральная плотность

где постоянная Болыцмана; абсолютная температура; при . Спектральная плотность помехи на положительных частотах Флуктуационную помеху из-за «внутренней» природы невозможно устранить, можно лишь учесть ее характеристики при синтезе такой оптимальной системы, в которой наличие флуктуационной помехи меньше всего сказывается на качестве передачи информации.

Математическими моделями сосредоточенных аддитивных помех являются узкополосные случайные сигналы и случайные последовательности импульсов. Математической моделью флуктуационной аддитивной помехи служит гауссовский белый шум (см. п. 2.4.4).

4.1.3. Модели непрерывных каналов. В настоящее время разработано большое количество моделей непрерывных каналов, различных по сложности математического описания, требуемым исходным данным и погрешностям описания реальных каналов. Наиболее распространены следующие модели: идеальный канал, гауссов канал, гауссов канал с неопределенной фазой, гауссов однолучевой канал с замираниями, гауссов многолучевой канал с замираниями и сосредоточенными аддитивными помехами. Для анализа реальных каналов в конкретных условиях обычно выбирают такую модель, которая приводит к не слишком трудоемким решениям задач и в то же время обладает погрешностями, допустимыми в инженерных расчетах.

Идеальный канал можно применять как модель реального непрерывного канала, если соблюдаются следующие условия: помехи любого вида отсутствуют, оператор преобразования сигналов в канале является детерминированным (см. рис. 4.1), мощность и полоса сигналов ограничены. Для анализа выходных

сигналов с помощью этой модели необходимо знать. характеристики входных сигналов и операторов Модель идеального канала слабо отражает реальные условия, ее применяют чаще всего для анализа линейных и нелинейных искажений модулированных сигналов в многоканальных системах проводной связи.

Гауссовский канал. Основные допущения при построении этой модели следующие: коэффициент передачи и время задержки сигналов в канале не зависят от времени и являются детерминированными величинами, известными в месте приема сигналов; в канале действует аддитивная флуктуационная помеха - гауссовский белый шум (гауссовский процесс).

Если на вход гауссового канала поступает узкополосный сигнал, то выходной сигнал можно представить в виде

где квадратурные составляющие входного сигнала; коэффициент передачи канала как функция времени; средняя частота входного сигнала; время задержки сигнала в канале; - гауссовский белый шум. Если на вход гауссова канала поступает широкополосный сигнал, для компоненты которого коэффициент передачи канала равен а фазовый сдвиг то выходной сигнал

где средняя частота компоненты; время задержки компоненты; число компонент. Из сравнения (4.7) и (4.8) следует, что входной сигнал может рассматриваться как узкополосный, если амплитудные и фазовые искажения отсутствуют, и Для анализа сигналов на выходе гауссовых каналов необходимо знать характеристики входных сигналов, значения а также спектр помехи

Гауссов канал применяют как модель реальных каналов проводной связи и однолучевых каналов без замираний или с медленными замираниями, когда можно надежно измерить Эта модель позволяет анализировать амплитудные и фазовые искажения сигналов и влияние флуктуационной помехи.

Гауссовский канал с неопределенной фазой сигнала. В этой модели время задержки сигнала в канале рассматривают как случайную величину, поэтому фаза в (4.7) также случайна. Для анализа выходных сигналов канала необходимо знать закон распределения времени задержки или фазы сигнала.

Введем в (4.7) следующие обозначения для квадратурных компонент:

Для реальных каналов измеряют следующие характеристики этих процессов: математические ожидания дисперсии корреляционные функции . В зависимости от измеренных значений характеристик, различают обобщенную гауссовскую модель, обобщенную релеевскую модель и релеевскую модель однолучевого канала с замираниями.

имеет вид (2.87).

В релеевской модели канала поэтому распределение величины (4.10) является распределением Релея (2.78), а распределение фазы равномерное (2.79). Следовательно, обобщенная гауссовская модель однолучевого канала с замираниями является наиболее общей, частными видами этой модели служат обобщенная релеевская модель и релеевская модель.

Рассмотренные модели однолучевого канала с замираниями достаточно хорошо описывают свойства радиоканалов различных диапазонов и проводных каналов со случайными, в том числе и переменными параметрами.

Гауссов многолучевой канал с замираниями. Эта модель описывает радиоканалы, распространение сигналов от передатчика к приемнику в которых происходит по различным «каналам» - путям. Длительности прохождения сигналов и коэффициенты передачи различных «каналов» являются неодинаковыми и случайными. Принимаемый сигнал образуется в результате интерференции сигналов, пришедших по различным путям. Он описывается соотношением (4.8), в котором квадратурные составляющие передаваемого сигнала, прошедшие по

Гауссовский многолучевой канал с замираниями и аддитивными сосредоточенными помехами. В этой модели наряду с флуктуационной помехой учитывают и различного вида сосредоточенные помехи. Она является наиболее общей и достаточно полно отражает свойства многих реальных каналов. Однако ее использование порождает сложность и трудоемкость решения задач анализа, а также необходимость сбора и обработки большого объема исходных статистических данных.

В дальнейшем для решения задач анализа непрерывных и дискретных каналов используются, как правило, модель гауссовского канала и модель гауссовского однолучевого канала с замираниями.

СОГЛАСОВАНИЕ СИГНАЛА С КАНАЛОМ

Скорость передачи измерительной информации определя­ет эффективность системы связи, входящей в измерительную систему.

Упрощенная схема измерительной системы показана на рис.175.

Обычно первичный измерительный преобразователь преоб­разует измеряемую величину в электрический сигнал X(t), который нужно передать по каналу связи. В зависимости от того, что представляет собой канал связи (электрический провод или кабель, световод, водная среда, воздушное или безвоздушное пространство) носителями измерительной ин­формации могут быть электрический ток, луч света, звуко­вые колебания, радиоволны и т.п. Выбор носителя является первым этапом согласования сигнала с каналом .

Обобщенными характеристиками канала связи являют­ся время Т к, в течение которого он предоставлен для пере­дачи измерительной информации, ширина полосы пропуска­ния F к и динамический диапазон Н к, под которым пони­мают отношение допустимой мощности в канале к мощнос­ти неизбежно присутствующих в канале помех, выраженное в децибелах. Произведение

называется емкостью канала.

Аналогичными обобщенными характеристиками сигнала являются время Т с, в течение которого происходит переда­ча измерительной информации, ширина спектра F c и динами­ческий диапазон Н c - выраженное в децибелах отношение наибольшей мощности сигнала к той наименьшей мощности, которую необходимо отличать от нуля при заданном качест­ве передачи. Произведение

называется объемом сигнала.

Геометрическая интерпретация введенных представлений показана на рис. 176.

Условием согласования сигнала с каналом, обеспечиваю­щим передачу измерительной информации без потерь и иска­жений при наличии помех, служит выполнение неравенства

когда объем сигнала полностью "вписывается" в емкость ка­нала. Однако условие согласования сигнала с каналом может выполняться и тогда, когда некоторые (но не все) из послед­них неравенств не выполняются. В этом случае возникает необходимость так называемых обменных операций, при ко­торых происходит как бы "обмен" длительности сигнала на ширину его спектра, или ширины спектра на динамический диапазон сигнала и т.п.

Пример 82. Сигнал, имеющий ширину спектра 3 кГц, необходи­мо передать по каналу, полоса пропускания которого 300 Гц. Это можно сделать, записав его предварительно на магнитную ленту и вос­производя при передаче со скоростью в 10 раз меньшей скорости за­писи. При этом все частоты исходного сигнала уменьшатся в 10 раз, и во столько же раз увеличится время передачи. Принятый сигнал при этом также нужно будет записать на магнитную ленту. Воспроизводя его затем со скоростью, в 10 раз большей, можно будет воспроизвести исходный сигнал.

Аналогичным образом можно за короткое время передать дли­тельный сигнал, если полоса пропускания канала шире спектра сигнала.

В каналах с аддитивными некоррелированными помеха­ми

где Р c и Р п - соответственно мощности сигнала и помех. При передаче электрических сигналов отношение

можно рассматривать как число уровней квантования сигна­ла, обеспечивающих безошибочную передачу. Действительно при выбранном шаге квантования сигнал любого уровня из-за влияния помех не может быть принят за сигнал сосед­него уровня. Если теперь представить сигнал совокупностью мгновенных значений, взятых в соответствии с теоремой В.А. Котельникова через промежутки времени Dt= ,

то в каждый из этих моментов времени он будет соответ­ствовать одному из уровней, т.е. может иметь одно из п равновероятных значений, что соответствует энтропии

После регистрации приемным устройством одного из уровней в фиксированный момент времени энтропия (апостериорная) окажется равной 0, а квант информации (количество инфор­мации, переданной в дискретный момент времени)

Так как весь сигнал передается N = 2 F c T c квантами, то коли­чество содержащейся в нем информации

прямо пропорционально объему сигнала. Для передачи этой информации за время Т к необходимо обеспечить скорость передачи

Если сигнал с каналом согласованы и Т с = Т к; F c = F к,то

Это формула К. Шеннона для предельной пропускной способ­ности канала. Она устанавливает максимальную скорость безошибочной передачи информации . При Т c < T к скорость может быть меньшей, а при Т с > T к возможны ошибки.

Зависимость предельной пропускной способности канала от отношения сигнал/помеха при нескольких значениях ши­рины полосы пропускания показана на рис. 177. Характер этой зависимости разный при больших и малых отношениях

т.е. зависимость пропускной способности канала от отноше­ния сигнал/помеха логарифмическая.

Если «1, то несмотря на то, что Р п » Р c , безошибочная передача все-таки возможна, но с очень малой скоростью. В этом случае справедливо разложение

в котором можно ограничиться первым членом. С учетом то­го, что log e = 1,443, получим

Таким образом, при малых отношениях сигнал/помеха зави­симость пропускной способности от отношения сигнал/поме­ха линейна.

Зависимость пропускной способности от ширины поло­сы пропускания канала в реальных системах более сложная, чем просто линейная. От полосы пропускания канала зави­сит мощность шумовой помехи на входе приемного устрой­ства. Если спектр помехи равномерный, то

где G - спектральная плотность мощности помехи, т.е. мощность помехи, приходящаяся на единицу полосы частот. Тогда

Мощность сигнала можно выразить через такую же спект­ральную плотность, если ввести в рассмотрение эквивалент­ную полосу частот F э:

Разделив обе части этого выражения на F э, получим:


Характер этой зависимости показан на рис. 178. Важно от­метить, что с увеличением поло­сы пропускания канала его про­пускная способность не увеличи­вается безгранично, а стремится к некоторому пределу . Это объ­ясняется усилением шума в ка­нале и ухудшением отношения сигнал/шум на входе приемного устройства. Предел, к которому с ростом F к стремится с можно определить, воспользовавшись при больших F к уже известным разложением логарифмической функции в ряд. Тогда, если


Таким образом, максимальное значение, к которому стремится предельная пропускная способность канала с рос­том его ширины полосы пропускания, пропорционально отношению мощности сигнала к мощности помех, приходя­щейся на единицу полосы частот. Отсюда, очевидно, вытека­ет следующий практический вывод: для увеличения предель­ной пропускной способности канала нужно увеличивать мощность передающего устройства и использовать приемное устройство с минимальным уровнем шумов на входе.



Наряду с эффективностью вторым важнейшим показа­телем качества системы связи является помехоустойчивость. При передаче измерительной информации в аналоговой фор­ме она оценивается по отклонению принятого сигнала от переданного. Помехоустойчивость дискретных каналов связи характеризуется вероятностью ошибки Р ош (отношением числа ошибочно принятых знаков к общему числу передан­ных) и связана с ней зависимостью

Если, например, Р ош = 10 -5 , то æ = 5; если Р ош = 10 -6 , то æ = 6.

Эффективным способом повышения помехоустойчивости при передаче измерительной информации в аналоговой форме и некоррелированных помехах является накопление. Сигнал передается несколько раз и при когерентном сложении всех принятых реализации его значения в соответствующие момен­ты времени суммируются, в то время как помеха в эти моменты времени, являясь случайной, частично компенсиру­ется. В результате отношение сигнал/помеха увеличивается, помехоустойчивость повышается. Аналогично идея накопле­ния реализуется при передаче измерительной информации по дискретному каналу.

Пример 83 . Пусть характер помехи таков, что она может быть принята за сигнал (т.е. 0 может быть принят за 1). При передаче кодом Бодо комбинация 01001 трижды принята в виде:

Если сумматором является устройство, не срабатывающее при появ­лении хотя бы одного нуля в столбце, то комбинация будет принята правильно при условии, что каждый ноль хотя бы раз был принят вер­но.

Если при одной передаче вероятность независимых оши­бок обозначить через Р ош, то после N - кратного повторения передачи она будет равна Р ош. Следовательно, помехоустой­чивость после N повторных передач

где æ - помехоустойчивость при однократной передаче. Та­ким образом, помехоустойчивость при накоплении возрас­тает в число повторений раз.

Одним из способов повышения помехоустойчивости яв­ляется также применение корректирующих кодов.

Повышение помехоустойчивости достигается за счет увеличения избыточности, а в более общем плане - за счет увеличения объема сигнала при том же количестве измери­тельной информации. При этом должно сохраняться условие согласования сигнала с каналом. При выполнении этого усло­вия и Т c = Т к; Н с = Н к передача измерительной информации с помощью амплитудно-модулированного высокочастотного колебания является более помехоустойчивой, чем непосред­ственная передача сигнала, потому что в случае, например, тональной модуляции занимает вдвое большую полосу частот. В свою очередь применение глубокой частотной или фазовой модуляции, благодаря расширению спектра,еще больше повышает помехоустойчивость системы связи. В этом смысле перспективным является применение не простых сигналов, у которых

F с Т с ≈ 1,

а сложных, для которых

К ним относятся импульсные сигналы с высокочастотным заполнением и частотной модуляцией или фазовой манипу­ляцией несущих колебаний и др.

Требования эффективности и помехоустойчивости сис­тем связи являются противоречивыми. Они побуждают с одной стороны уменьшать, а с другой - увеличивать объем сигнала, не нарушая, условия согласования его с каналом и не меняя количества содержащейся в нем информации. Удовлетворение этих требований предполагает синтез оп­тимальных технических решений.

Классификация сигналов. Их характеристики.

Под сигналом понимают физический процесс, который осуществляет перенос информации во времени и пространстве. Сигналы описываются математическими моделями , отражающими общие свойства различных по физической природе процессов. Чаще всего сигналы представляются функциональными зависимостями, в которых аргументом является время либо некоторая пространственная переменная . Функции, описывающие сигналы, могут принимать как вещественные , так и комплексные значения.

Сигнал, описываемый функцией одной переменной, называется одномерным , а сигнал, описываемый функцией независимых переменных - многомерным . Например, яркость изображения - двумерный сигнал.

Сигнал называется казуальным , если он имеет точку отсчета (начало во времени).

Финитные сигналы - это сигналы конечной длительности, т.е. существующие на конечном временном интервале. Они отличны от нуля на этом интервале и равны нулю за его пределами.

Сигналы также бывают (рис 2):

Непрерывные (аналоговые);

Дискретные во времени;

Квантованные по величине и непрерывные во времени;

Квантованные по величине и дискретные во времени (цифровые).

a) непрерывные сигналы б) дискретные во времени сигналы

в) сигналы, квантованные по величине г) сигналы, квантованные по

и непрерывные во времени величине и дискретные во времени

Рис 2. Виды сигналов.

Иной признак классификации сигналов основан на возможности или невозможности предсказания точных значений сигнала в любой момент времени или в любой точке пространственной координаты. Соответственно, сигналы, для которых возможно указанное предсказание, называются детерминированными , а сигналы, для которых невозможно точно предсказать значения - случайными . Случайные сигналы описываются случайными функциями, значения которых при каждом данном значении аргумента представляются случайными величинами. Случайную функцию времени называют случайным процессом . При одном наблюдении случайного процесса получают определенную функциональную зависимость, которую называют реализацией . Примером реализации случайного процесса может служить отрезок сигнала , зарегистрированный на выходе микрофона при произнесении какого-либо шипящего звука. Примером детерминированного сигнала является гармоническое колебание .

Если случайный сигнал носит вероятностный характер, то на основании методов теории вероятности можно определить его статистические характеристики.

Вероятность того, что величина попадает в заданный интервал, определяется выражением:

, (1)

где – границы возможных значений;


– представляет собой дифференциальный закон распределения случайной величины и называется одномерной плотностью вероятности;

– интегральная функция распределения случайной величины.

Для практических приложений важны следующие статистические характеристики случайной величины :

1) Математическое ожидание случайной величины:

, (2)

если события равновероятны, то математическое ожидание равно среднему арифметическому

2) Дисперсия случайной величины (отклонение от среднего):

если события равновероятны:

.

3) Среднее квадратическое отклонение (СКО):

Стационарным процессом называется процесс, если его -мерный закон распределения зависит от интервала времени , но не зависит от положения на числовой оси. Для строго стационарных процессов математическое ожидание и дисперсия не зависят от времени.

При рассмотрении случайных величин следует различать статистические характеристики, определенные по совокупности и по времени. В первом случае характеристики определяются на основании наблюдения над многими одинаковыми объектами в один и тот же момент времени, а во втором случае – на основании наблюдения над одним объектом в течение достаточно длительного времени. Случайный процесс называется эргодическим , если при определении любых статистических характеристик усреднение по совокупности и по выборке равно усреднению по времени.

Корреляция – величина схожести двух сигналов. Если сравниваются два разных сигнала, то мерой их схожести является взаимно-корреляционная функция . Если сигнал сравнивается сам с собой, то степень схожести определяется автокорреляционной функцией .

Основными характеристиками детерминированных сигналов являются его энергетические характеристики.

Энергетические характеристики сигналов:

1. Мгновенная (текущая) мощность: . (5)

2. Энергия: . (6)

3. Средняя мощность на интервале:

. (7)

4. Если сигнал равен сумме двух сигналов:

,

,

. (8)

Взаимная энергия и мощность двух сигналов характеризуют степень схожести двух сигналов .

5. Если сигналы совпадают, взаимная энергия увеличивается в 4 раза, и такие системы называются когерентными :

6. Если взаимная мощность или взаимная энергия двух сигналов равна нулю (т.е. или ) то такие сигналы называют ортогональными . Из ортогональности по энергии всегда следует ортогональность по мощности, но не наоборот:

7. Если сигналы не полностью совпадают, то они называются частично совпадающими сигналами.

При цифровой обработке сигналов часто используют такие специальные функции как функция Хэвисайда и -функция Дирака

1) Функция единичного сигнала (функция Хэвисайда) определяется:

Используется при создании сигналов конечной длительности:

В MATLAB данную функцию можно смоделировать с помощью оператора сравнения .

2) -функция или функция Дирака – бесконечно узкий импульс с бесконечной амплитудой и единичной площадью :

Важное свойство -функции – ее фильтрующее свойство:

. (10)

Лекция №2. Основы анализа сигналов.

Сигнал на интервале может быть записан в форме обобщенного ряда Фурье :

. (1)

Если – вектор, то последнее выражение можно интерпретировать как разложение по некоторому базису, а коэффициенты могут рассматриваться как проекции вектора на координатные оси, заданные системой функций , образующих базис .

Для того чтобы разложение было возможно, исходный сигнал и система функций должны удовлетворять определенным условиям :

Во-первых , сигнал должен принадлежать множеству квадратично-интегрируемых на отрезке сигналов.

Сигналы характеризуются длительностью шириной спектра и динамическим диапазоном . В качестве обобщенной характеристики используется объем сигнала Длительность сигнала определяет время его суще ствования, ширина спектра - диапазон частот, в котором сосредоточена основная энергия сигнала. Динамический диапазон характеризует отношение наибольшей мгновенной мощности сигнала Ртах к наименьшей допустимое значение которой определяется мощностью помех.

Важной характеристикой сигналов является также база . Сигналы называются узкополосными (простыми), если и широкополосными (сложными), если

Элементарные сигналы, получаемые на выходе УПС при использовании -позиционного кода, можно разделить на следующие группы :

сигналы обеспечивающие получение максимальной помехоустойчивости по отношению к флуктуационным помехам в детерминированных каналах. Энергия этих сигналов чаще всего одинакова: при а скалярное произведение при ортогональные сигналы, для биортогональные сигналы, для которых величина m всегда четная, любому из m сигналов всегда соответствует один противоположный сигнал, а остальные сигналов ортогональны; неортогональные сигналы, для которых соблюдается условие

Примером сигналов, обеспечивающих максимальную помехоустойчивость при детерминированном неискажающем канале и аддитивном белом шуме, являются сигналы, модулированные по фазе, и двухполюсные сигналы постоянного тока. К ортогональным относятся сигналы двоичной частотной модуляции (ЧМ), если частоты отрезков гармонических сигналов кратны частоте модуляции. Биортогональные сигналы используются при двукратной фазовой модуляции, когда Неортогональные сигналы применяются при фазовой модуляции, когда сдвиги между отдельными сигналами составляют, например 0°, 120° и 240°.

Многие задачи анализа и синтеза реальных сигналов упрощаются благодаря тому, что эти сигналы, как правило, сложные по форме, можно представить в виде простых сигналов. Это удобно для последующего анализа их прохождения через те или иные цепи. Например, некоторый сигнал может быть представлен в виде совокупности ортогональных составляющих (элементарных сигналов):

причем бесчисленным количеством способов. Запись (6.1) называют обобщенным рядом Фурье. Интервал показывает время действия сигнала. Так как система ортогональных функций применяемая при разложении, заранее известна, то сигнал определяется набором весовых коэффициентов для этих функций.

Такие наборы чисел называются спектрами сигналов. Спектр сигнала, представленный в виде суммы спектральных составляющих (6.1), называется дискретным.

Если для представления сигнала недостаточно дискретного набора базисных функций а требуется несчетное множество базисных функций отличающихся значением непрерывно изменяющегося параметра р, то сигнал представляется в виде интеграла

который называется обобщенным интегралом Фурье. Спектр такого сигнала характеризуется функцией непрерывной переменной (3 и называется непрерывным.

Рассматривая прохождение каждой составляющей спектра через линейную цепь с заданными характеристиками, сигнал на выходе цепи получаем также в виде (6.1) или (6.2) с весовыми коэффициентами или в общем случае отличными от или и зависящими от характеристик рассматриваемой цепи.

Помимо анализа в теории ПДС приходится решать задачи синтеза сигналов. Они могут быть двух типов: структурный синтез- определение формы сигналов, удовлетворяющих заданным требованиям; параметрический синтез - определение параметров сигналов известной формы. Если в процессе синтеза необходимо обеспечить экстремум того или иного функционала (или функции), который характеризует качество синтеза, то синтез называется оптимальным.

На практике широко используются системы сигналов прямоугольной и синусоидальной форм. Прямоугольные сигналы отличаются друг от друга амплитудой, длительностью, числом и местоположением импульсов прямоугольной формы на единичном интервале то. Элементарные сигналы синусоидальной формы представляют собой отрезки синусоидальных колебаний, отличных друг от друга по амплитуде, частоте и фазе.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: