Спутниковая связь: принцип действия, зона покрытия, характеристики каналов и тарифные планы. МКС онлайн — Земля из космоса в реальном времени Состояние и перспективы развития

Наболевшие проблемы решаемы цепочкой космических станций периодом обращения 24 часа, оккупировавших высоту 42000 км относительно центра Земли… в плоскости экватора.

А. Кларк, 1945 год.

В каменном веке связная сеть работает путём многократного повторения действий по регулированию объёма испускаемого костром дыма. Земля знала скороходов, лучшим стал Маленький Мук. Современная система использует космические летательные аппараты. Плюсом спутника назовём большое покрытие территории. Волны используют преимущественно короткие, способные распространяться по прямой. Мир один – везде свои цены…

Предпосылки использования

Идею ретрансляции зародил Эмиль Гуарини-Форезио в 1899 году. Концепцию опосредованной передачи сигнала опубликовал немецкий Журнал для электротехника (том 16, 35-36). Артур Кларк в 1945 году озвучил концепцию системы связи меж геостационарными космическими аппаратами. Писатель отказался брать патент, отнекиваясь двумя умозаключениями:

  1. Малая вероятность осуществления задумки.
  2. Необходимость подарить идею человечеству целиком.

Одновременно учёный указал координаты наилучшего покрытия областей поверхности планеты:

  • 30 градусов в.д. – Африка, Европа.
  • 150 градусов в.д. – Китай, Океания.
  • 90 градусов з.д. – Америка.

Писатель занизил рабочую частоту, высказав намерение применить 3 МГц, уменьшив гипотетические рефлекторы (несколько футов).

Наземные системы СВЧ

Англо-французский консорциум, возглавляемый Андре Клавиром, пошёл дальше. Первые успешные попытки использования диапазона СВЧ связью датированы 1931 годом. Английский Канал продемонстрировал передачу информации частотой 1,7 ГГц (современный сотовый диапазон) на 64 километра станциями, оснащёнными тарелками диаметром 3 метра, соединяя Дувр и Кале.

Интересно! Первый коммерческий телевизионный канал УКВ использовал частоту 300 МГц.

Историки склонны считать Вторую мировую войну лошадкой, вывезшей отрасль на вершину. Изобретение клистрона, усовершенствование технологий изготовления параболоидов внесли неоценимый вклад. Расцвет трансатлантических отношений датируется 50-ми годами XX века.

Для справки! Первая релейная линия, образованная восемью ретрансляторами, Нью-Йорк – Бостон, построена в 1947 году.

Америка и Европа наладили передачу информации ретрансляторами (радиосвязь, называемая релейной). Немедля началось коммерческое телевещание. Особенностью СВЧ связи называют возможность точного предсказания результата уже на этапе проектирования системы.

Для справки! Релейная связь – технология передачи цифровых, аналоговых сигналов меж приёмниками, находящимися в поле видимости.

Космические аппараты

Первый советский спутник (1957 год) нёс связную аппаратуру. Тремя годами позже американцы подняли на высоту 1500 км надувной шар, служивший пассивным ретранслятором, благодаря металлизированному покрытию сферы. 20 августа 1964 года 11 стран, включая СССР, подписали договор о создании Intelsat (международная связь). Советский блок шёл путём секретности, пока запад зарабатывал. Восточный блок создал собственную программу в 1971 году.

Спутники явились настоящей находкой, позволяя соединить противоположные берега океана. Альтернативой выступает оптическое волокно.

Первыми тёмную лошадку запустили военные наравне с тропосферной связью, использовавшей эффект отражения волны верхними слоями. Советскую микроволновую связь перехватывала небесная группа Риолит. Система, разработанная для ЦРУ (США). Аппарат занимал позицию, захватываемую наземным лучом советской релейной связи, записывая послания. Контролировались территории Китая, Восточной Европы. Диаметр зонтоподобных рефлекторов достигал 20 метров.

Руководство США всегда знало намерения руководителей СССР, прослушивая все, вплоть до телефонных звонков. Сегодня спутниковые системы позволяют, благодаря эффекту Допплера, дистанционно посещать любые «конфиденциальные» беседы, проводимые в помещениях, снабжённых типичным оконным стеклопакетом.

Зарегистрированы первые попытки осуществить идеи Николы Тесла в космосе: беспроводная передача электроэнергии спутниковыми антеннами. Эпопея стартовала в 1975 году. Ныне концепция вернулась домой. Башня Ворденклифф давно разрушена, однако главный остров Гавайи получил свою порцию 20 Вт беспроводным путём.

Для справки! Использование космической связи оказалось экономически оправданной альтернативой оптического волокна.

Особенности сигнала

Неудивительно использование спутников, учитывая сказанное.

Окна прозрачности

Явление поглощения атмосферой волн известно давно. Учёные, исследовав феномен, заключили:

  • Затухание сигнала определено частотой.
  • Наблюдаются окна прозрачности.
  • Явление модулируется погодными условиями.

Например, миллиметровый диапазон (30-100 ГГц) сильно угнетается дождём. Окрестности частоты 60 ГГц поглощают молекулы кислорода, 22 ГГц – водой. Частоты ниже 1 ГГц отсекаются излучениями галактики. Негативное влияние оказывают температурные шумы атмосферы.

Сказанное объясняет выбор современных частот космической связи. Полный перечень характеристик сигнала Ku-диапазона демонстрирует рисунок.

Используется также С-диапазон.

Зоны приёма

Луч, пересекая поверхность Земного шара, формирует изотропные кривые эквивалентного приёма. Суммарные потери составляют:

  1. 200 дБ – С-диапазон.
  2. 206 дБ – Ku-диапазон.

Солнечные помехи способны помешать ловле пакетов. Наихудшие условия длительностью 5-6 дней создаются межсезоньем (зима, осень). Интерференция светила снабжает техников наземных станций гарантированной работой. На время природного явления отключают системы слежения. Иначе тарелки могут поймать Солнце, отдав неправильные команды бортовым системам стабилизации. Банки, аэропорты получают предупреждение: связь временно нарушится.

Зоны Френеля

Препятствия вокруг вышки связи провоцируют сложение волн, формируя зоны затухания/подъёма сигнала. Феномен объясняет необходимость наличия чистого пространства близ приёмопередатчика. К счастью, СВЧ лишены указанного недостатка. Благодаря важной особенности, каждый дачник ловит НТВ+ тарелкой.

Мерцания

Непредсказуемые изменения атмосферы заставляют сигнал постоянно меняться. Колебания до 12 дБ амплитудой затрагивают полосу шириной 500 МГц. Явление длится 2-3 часа максимум. Мерцания мешают наземным станциям отслеживать спутник, требуя принятия превентивных мер.

Линейность луча

Особенностью СВЧ считают прямолинейную траекторию луча. Явление позволяет сконцентрировать мощность, понижая требования к бортовым системам. Наверняка первоначальной задачей стал шпионаж. Позже антенны перестали быть узконаправленными, покрывая громадные территории, как например, Россия.

Инженеры называют свойство недостатком: невозможно обогнуть горы, овраги.

Особенности сложения волн

Практически отсутствует интерференционная картина. Позволительно значительно уплотнить соседние частотные каналы.

Ёмкость

Теорема Котельникова определяет верхнюю границу спектра передаваемого сигнала. Порог напрямую задан частотой несущей. СВЧ, благодаря высоким значениям, вмещают до 30 раз больше информации, нежели УКВ.

Возможность регенерации

Развитие цифровых технологий открыло дорогу методикам коррекции ошибок. Искусственный спутник:

  • принимал слабый сигнал;
  • декодировал;
  • исправлял ошибки;
  • кодировал;
  • передавал дальше.

Превосходное качество спутниковой связи стало «притчей во языцах».

Наземные антенны

Спутниковые тарелки называют параболоидами. Диаметр достигает 4 метра. Помимо указанных доступны 2 вида антенн релейной связи (оба наземные):

  1. Диэлектрические линзы.
  2. Рупорные антенны.

Параболоиды обеспечивают высокую избирательность, позволяя установить связь, преодолевшему тысячи километров лучу. Типичная тарелка неспособна передать сигнал, требуются более высокие характеристики.

Принцип действия

Спутники шпионы постоянно двигались, обеспечивая относительную неуязвимость и скрытность наблюдения. Использование мирных технологий пошло иным путём. Реализована концепция Кларка:

  • Экваториальная орбита служит пристанищем сотен геостационарных спутников.
  • Непоколебимость положения обеспечивает простоту наведения наземного оборудования.
  • Высота орбиты (35786 метров) фиксированная, поскольку необходимо уравновесить силой центробежной земное тяготение.

Аппарат покрывает часть территории планеты.

Система Intelsat сформирована 19-ю спутниками, сгруппированными по четырём регионам. Абонент видит 2-4 одновременно.

Время жизни системы составляет 10-15 лет, затем отживающее срок оборудование меняют. Гравитационные эффекты планет, Солнца выявляют потребность использовать системы стабилизации. Процесс коррекций заметно снижает топливный ресурс аппаратов. Комплекс Intelsat допускает отклонения положения до 3-х градусов, продляя жизнь орбитального роя (свыше трёх лет).

Частоты

Окно прозрачности ограничено диапазоном 2-10 ГГц. Intelsat использует область 4-6 ГГц (С-диапазон). Повышение загрузки вызвало переход части трафика на Ku-диапазон (14, 11, 12 ГГц). Рабочий участок раздают порциями транспондерам. Земной сигнал принимается, усиливается, излучается назад.

Проблемы

  1. Дороговизна запуска. Преодоление 35 тысяч километров отнимает немало ресурсов.
  2. Задержка распространения сигнала превышает четверть секунды (достигая 1 с).
  3. Малый угол наклона линии визирования искусственного летательного аппарата повышает энергетические затраты.
  4. Площадь приёма покрыта неэффективно. Гигантские пространства лишены абонентов. КПД вещания чрезвычайно низок.
  5. Окна прозрачности узкие, наземные станции приходится разносить территориально, менять поляризацию.

Пути решения

Частично недостатки устраняет внедрение наклонной орбиты. Спутник перестаёт быть геостационарным (см. выше спутники-шпионы времён Холодной войны). Необходимо минимум три равноудалённых аппарата, чтобы обеспечить связь круглосуточно.

Полярная орбита

Полярная орбита одна способна покрыть поверхность. Однако потребуется несколько периодов обращения космического аппарата. Рой спутников, разнесённых по углу, способен решить задачу. Полярные орбиты обошли стороной коммерческое вещание, став верным помощником систем:

  • навигации;
  • метеорологии;
  • наземных станций управления.

Наклонная орбита

Наклон успешно использовался советскими спутниками. Орбита характеризуется следующими параметрами:

  • период обращения – 12 часов;
  • наклон – 63 градуса.

Видимые 8/12 часов три спутника обеспечивают связь полярным регионам, недоступным с экватора.

Спутниковый телефон

Мобильный гаджет напрямую ловит космос, минуя наземные вышки. Первый Inmarsat 1982 года обеспечивал доступ морякам. Семью годами позже создан наземный вид. Канада первой осознала преимущества оборудования пустынных территорий с редкими жителями. Вслед программу освоили США.

Проблему решает запуск низко летающих спутников:

  1. Период обращения – 70..100 минут.
  2. Высота 640..1120 км.
  3. Зона покрытия – круг радиусом 2800 км.

Учитывая физические параметры, длительность индивидуального сеанса связи охватывает диапазон 4-15 минут. Поддержание работоспособности требует известных усилий. Пара коммерсантов США в 90-е обанкротились, не сумев набрать достаточно абонентов.

Массо-габаритные характеристики непрерывно улучшаются. Globalstar предлагает фирменное ПО смартфона, посредством Bluetooth ловящего сигнал сравнительно громоздкого приёмника спутников.

Спутниковым телефонам требуется мощная приёмная антенна, желательно зафиксированная. Оборудуют преимущественно здания, транспорт.

Операторы

  1. ACeS охватывает одним-единственным спутником Азию.
  2. Inmarsat старейший оператор (1979 год). Оборудует яхты, корабли. Обладая 11 летательными аппаратами, компания медленно осваивает рынок мобильных устройств, заручившись помощью ACeS.
  3. Thuraya обслуживает Азию, Австралию, Европу, Африку, Средний восток.
  4. MSAT/SkyTerra американский провайдер, использующей оборудование эквивалентное Inmarsat.
  5. Terrestar покрывает Северную Америку.
  6. IDO Global Communications на стадии бездействия.

Сети

Коммерческие проекты ограниченны.

GlobalStar

GlobalStar – совместное детище Qualcomm и Loral Corporation, позже поддержанное Alcatel, Vodafone, Hyundai, AirTouch, Deutsche Aerospace. Запуск 12 спутников был сорван, первый звонок состоялся 1 ноября 1998 года. Начальная стоимость (февраль 2000 года) составила 1,79 доллар/мин. Претерпев ряд банкротств и преобразований, компания обеспечивает клиентов 120 стран.

Обеспечивает 50% трафика США (свыше 10000 вызовов). Работоспособность поддерживают наземные репитеры. Всего 40, включая 7, вмещаемых Северной Америкой. Территории, лишённые наземных репитеров, образуют зону молчания (Южная Азия, Африка). Хотя аппараты регулярно бороздят небесную высь.

Абоненты получают американские телефонные номера, исключая Бразилию, где присваивают код +8818.

Список услуг:

  • Голосовые вызовы.
  • Системы определения местоположения с погрешностью 30 км.
  • 9,6 кбит/с пакетный доступ в интернет.
  • Мобильная связь CSD GSM.
  • Роуминг.

Телефоны используют технологии Qualcomm CDMA, исключая Ericsson и Telit, принимающие традиционные SIM-карты. Базовые станции вынуждены поддерживать оба стандарта.

Iridium

Провайдер использует полярную орбиту, обеспечивая 100% покрытие планеты. Организаторы потерпели банкротство, компания возрождена в 2001 году.

Это интересно! Iridium – виновник ночных небесных вспышек. Летящие спутники хорошо видны невооружённым глазом.

Флотилия компании включает 66 спутников, используя 6 низкоорбитальных траекторий высотой 780 км. Аппараты общаются, задействовав Ka-диапазон. Львиная доля запущена бывшими банкротами. На январь 2017 обновлено 7 единиц. Регенерация продолжается: первая группа (10 штук) улетела 14 января, вторая – 25 июня, третья – 9 октября.

Это интересно! Спутник Iridium 33 10 февраля 2009 года протаранил русский Космос 2251. Небесные обломки сегодня летают над Сибирью.

Компания продолжает оказывать услуги 850 тысячам абонентов. 23% прибыли выплачено государством. Стоимость звонка составляет 0,75 – 1,5 доллара/мин. Обратные вызовы сравнительно дороги – 4 доллара/мин (Google Voice). Типичные сферы деятельности нанимателей:

  1. Нефтедобыча.
  2. Морской флот.
  3. Авиация.
  4. Путешественники.
  5. Учёные.

Особую благодарность просили передать обитатели южной полярной станции Амундсена-Скотта. Компания повсеместно продаёт пакеты вызовов длительностью 50-5000 минут. Валидность первых оставляет желать лучшего, дорогие (5000 минут = 4000 долларов) сохраняют работоспособность 2 года. Месячно продление – 45 долларов:

  • 75 минут стоят 175 долларов, срок использования – 1 месяц.
  • 500 минут – 600-700 долларов, срок использования – 1 год.

Телефоны

Бывшие владельцы снабжали клиентов телефонными аппаратами двух изготовителей:

Моторола 9500 стал соратником первой коммерческой пробы компании. Бытующая поныне мобильная ударопрочная версия 9575 рождена 2011 годом, дополнена экстренной кнопкой вызова GSM, интерфейсом продвинутого определения местоположения. Аппарат настраивает Wi-Fi хот-спот, позволяя пользователям рядовых смартфонов посылать электронные письма, СМС, посещать интернет.

Техника Kyocera заброшена производителем. Модели распродают перекупщики. KI-G100 на базе GSM-телефона частоты 900 МГц снабжён чемоданчиком, оснащённым мощной антенной, ловящей вещание. Возможность приёма СМС обеспечена, отравлять могут лишь отдельные модели (9522). SS-66K снабжён нетипичной шаровой антенной.

  1. 9575 ударопрочный, водонепроницаемый телефон, снабжённый пылезащитным корпусом. Выдерживает температуры минус 20 – плюс 50 градусов Цельсия.
  2. 9555 – снабжён встроенной гарнитурой, USB-интерфейсом, переходником на последовательный порт RS-232.
  3. 9505А – здоровенный гаджет формы кирпича. Снабжён родным интерфейсом RS-232.
  4. SS-55K выпущен ограниченной партией. Неимоверных размеров, продаётся перекупщиками eBay.

Прочее оборудование компании включало:

  1. Пейджеры.
  2. Таксофоны.
  3. Оснастку яхт, самолётов.

Буи

Плавучие бакены, напоминающие систему отслеживание цунами, способны вести приём/передачу коротких сообщений. Интерфейс позволит использовать функционал фирменного телефона, отказывающегося ловить спутники.

Связной спутник может быть выведен на низкую околоземную орбиту, на околоземную орбиту промежуточной высоты или на геостационарную орбиту, высота которых над поверхностью Земли составляет (в порядке перечисления) около 1000, 10 000 и 36 000 км. Орбита первого типа проходит ниже двух радиационных поясов Земли, второго типа – между ними, а третьего – выше их. См. АТМОСФЕРА .

На геостационарной орбите спутник совершает один оборот вокруг Земли ровно за сутки. Поскольку за это время Земля совершает тоже один оборот вокруг своей оси, спутник кажется неподвижным на экваторе. Главное преимущество геостационарной орбиты в том, что антеннам наземных радиостанций не требуется отслеживать спутники, движущиеся по небосводу; нужно лишь наводить антенну всегда в одну точку на протяжении срока службы спутника. Крупным же ее недостатком является задержка примерно на четверть секунды между передачей радиосигнала одной наземной радиостанции и приемом – другой, возникающая из-за больших расстояний, которые должен проходить сигнал.

Главное преимущество околоземной орбиты меньшей высоты в том, что для вывода на нее требуется менее мощный носитель. Поскольку расстояние от наземной радиостанции до спутника меньше, оборудование спутника может быть менее мощным. Однако спутники на таких орбитах движутся относительно наземных радиостанций, поэтому для обеспечения непрерывности охвата необходимы следящие антенны и нельзя обойтись одним-единственным спутником.

Технические средства.

Для спутниковой связи необходимы технические средства трех видов: спутники, наземные радиостанции и ракеты-носители для вывода на орбиту. Эти технические средства несколько различаются в зависимости от типа орбиты, на которую выводится связной спутник.

Спутники.

Связной спутник состоит из ракетного блока, обеспечивающего питание, управление полетом и контроль бортовых систем, и блока связного оборудования, назначение которого – прием, усиление и ретрансляция сигналов с Земли. Многие связные спутники стабилизируются вращением вокруг одной оси. Такой спутник, подобно гироскопу, сохраняет неизменной свою ориентацию в пространстве. Кроме того, вращение способствует поддержанию равномерного распределения температуры по всему объему спутника. Применяются также спутники с трехосной стабилизацией, осуществляемой при помощи маховиков (гиродинов) и ракетных двигателей малой тяги. Спутники с трехосной стабилизацией несколько сложнее стабилизируемых вращением, но их солнечные батареи способны вырабатывать больше электроэнергии, а антенны легче направить на наземные радиостанции. Солнечные батареи (см. БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ) покрывают всю поверхность вращающихся связных спутников либо располагаются на специальных раскладных панелях трехосно-стабилизируемых спутников и преобразуют в электроэнергию около 20% энергии падающего на них солнечного света. Солнечные батареи небольшого спутника вырабатывают примерно 1 кВт электроэнергии, что соответствует мощности, потребляемой десятью 100-Вт электролампами. На более крупных спутниках 1990-х годов солнечные батареи вырабатывали до 10 кВт.

Наземные радиостанции.

Наземные станции спутниковой системы связи передают радиосигналы на спутники и принимают сигналы от них. Спутниковый передатчик 1990-х годов передавал в среднем примерно 20–40 Вт на один ретранслятор (устройство, принимающее и передающее радиосигнал). Это намного больше мощности типичного телефона сотовой связи (0,5 Вт), но радиосигнал спутника должен пройти расстояние до 36 000 км и может содержать до 1000 телефонных разговоров. Поэтому приемная система наземной радиостанции должна быть в миллиард раз более чувствительной, чем приемная станция сотовой телефонной связи, а это значит, что необходимы антенны больших размеров и приемники с очень низким уровнем шума. На заре спутниковой связи наземные радиостанции снабжались огромными антеннами диаметром до 30 м. В 1990-х годах на наземных станциях использовались «антенны очень малого раскрыва» (VSAT – very small aperture terminal) диаметром 1–2 м и более крупные антенны диаметром 2–10 м; получили распространение также бытовые телевизионные антенны диаметром 45–60 см.

Ракеты-носители.

Ракета-носитель выводит спутник на заданную околоземную орбиту. За отдельными исключениями, почти все ракеты-носители связных спутников разрабатывались на основе старых межконтинентальных ракет (см. РАКЕТНОЕ ОРУЖИЕ), созданных в 1950-х годах. Новые ракеты-носители появились в 1980-х годах. Первыми носителями, которые разрабатывались не как баллистические ракеты военного назначения, были американский многоразовый воздушно-космический аппарат (MBKA) «Шаттл» и ракета «Ариан», разработанная Европейским космическим агентством. «Шаттл» предназначался главным образом для обслуживания программы пилотируемых космических полетов НАСА, а ракета «Ариан» – в первую очередь для запуска связных спутников. После того как в 1986 взорвался MBKA «Челленджер», НАСА прекратило коммерческие запуски. В результате к системе «Ариан» перешла львиная доля контрактов на запуски связных спутников. В 1990-х годах на коммерческий рынок вышли также китайская ракета «Великий поход» и российская – «Протон». Путь «Великого похода» был отмечен авариями; что касается «Протона», то его номинальная надежность (95%) и большая масса спутника (4 т) предвещали ему коммерческий успех.

Запуск – это момент наибольшего риска на протяжении срока службы связного спутника. Общая вероятность благополучного запуска составляет около 90% (для конкретных ракет-носителей она меняется в пределах от 70 до 95%). Таким образом, в среднем 10% всех запусков оказываются неудачными и заканчиваются потерей спутника.

Состояние и перспективы развития.

С конца 1990-х годов компания «Комсат» (Communications Satellite), осуществляющая запуски связных спутников в США, оказалась перед перспективой сильнейшей конкуренции со стороны общественных телефонных систем. Дело в том, что волоконно-оптический телефонный кабель обеспечивает высокое качество сигнала, не вносит задержки времени и примерно равен по затратам спутникам (см . ВОЛОКОННАЯ ОПТИКА). Стало ясно, что со временем такие кабели для прямой связи (без переприемов) будут требовать меньших затрат, чем спутники. Однако компания «Комсат», зона действия спутников которой охватывает океаны, полагала, что для вещательной передачи телевизионного сигнала, речевого сигнала и цифровых данных спутники больше подходят, нежели кабельная связь, если не считать крупных городов. Кроме того, спутниковая связь представляется более экономичной, чем кабельная, при обслуживании малочисленных разбросанных пользователей, например телефонных абонентов в сельской местности.

В 1976 министерство ВМС США инициировало серию запусков связных спутников «Марисат» для обслуживания морских судов (см. ВОЕННО-КОСМИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ), и это привело к созданию Международной организации морской спутниковой связи «Инмарсат», которая начала действовать в 1982. Когда организация «Инмарсат» запустила более мощные спутники, у них нашлись и сухопутные пользователи в отдаленных областях. Возник рынок мобильной спутниковой связи – с подвижными сухопутными объектами. К концу 1990-х годов он был освоен. Компания «Америкен мобил сателлайт» (AMSC) запустила геостационарный спутник мобильной связи для обслуживания абонентов Северной Америки. Компания «Иридиум» к концу 20 в. создала сеть из 20 спутников на низких околоземных орбитах, которая обеспечивала бы сотовую мобильную связь на суше в масштабах всего земного шара, а также запустить спутники того же назначения на орбиты промежуточной высоты.

Экономические факторы и государственное регулирование.

Развитие спутниковой связи определяется в первую очередь экономическими факторами, хотя важную роль играет и политика. Сначала главной сферой применения связных спутников представлялась речевая связь, затем упор стали делать на телевидение, а к концу 20 в. начала бурно развиваться передача цифровых данных.

Первоначальным крупным экономическим стимулом развития спутниковой связи явилось то, что спутники могли обеспечивать прямую (без переприемов) трансокеанскую связь при значительно меньших затратах, чем коаксиальные подводные кабели, проложенные в 1950–1960-х годах. Разница в затратах тогда была более чем десятикратной, но она исчезла в конце 20 в. Поскольку кабель вносит меньшую задержку времени, он больше подходит для речевой (телефонной) связи. В конце 1990-х годов по волоконно-оптическому кабелю можно было передавать почти все трансокеанские телефонные сигналы.

В конце 1970-х годов начался взрывоподобный рост кабельного телевидения со спутниковой ретрансляцией. К концу 20 в. большинство населения земного шара получило возможность приема многочисленных телевизионных каналов, адресно предоставляемых компаниями кабельного телевидения, которые сами принимают их через космические ретрансляторы компаний спутниковой связи. Вся спутниковая связь, без учета спутников «Интелсат», почти на две трети использовалась для телевизионного вещания.

В конце 1970-х годов начали также возникать частные спутниковые сети, целиком обслуживающие одну компанию. Благодаря появлению «антенн очень малого раскрыва» VSAT компании получили возможность устанавливать связь между всеми своими офисами посредством антенн диаметром 3–6 м. Такие сети использовались главным образом для обмена цифровыми данными. Даже телефонные разговоры, как правило, передавались в цифровой форме. С помощью антенн VSAT и большего диаметра в 1970-х годах обеспечивалась телефонная связь с поселками на Аляске. В 1990-х годах спутники впервые были применены для «сельской» телефонии во всем мире. В некоторых экспериментах спутниковая ретрансляция выполняла функции протяженных телефонных линий, а сотовая – функции местных шлейфов.

Любительская радиосвязь с МКС и через спутники AMSAT

}

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: