Конденсатор в помощь аккумулятору. Конденсатор вместо аккумулятора: техническое решение

Суперконденсатор (или по-другому ионистор) представляет собой устройство для накопления электрической энергии, занимающее среднее положение между аккумуляторной батареей и электролитом. Правда, в отличие от них, эти изделия имеют несравнимо меньшие размеры и выглядят как обычные электролитические конденсаторы (смотрите рисунок ниже).

По своим характеристикам суперконденсатор (СК) существенно отличается от рядовых электролитических изделий, поскольку он более долговечен и имеет меньшую токовую утечку. Основная цель разработки этих изделий – создание накопителей энергии нового поколения, способных заменить привычные аккумуляторные батареи.

Характерные отличия

Помимо уже перечисленных выше достоинств, суперконденсатор характеризуется более высоким, чем у батарей, показателем удельной ёмкости, что позволяет использовать его в качестве источника питания в электромобилях, например. Благодаря уникальным энергетическим свойствам, время зарядки этого электролитического элемента заметно сокращается (то же самое можно сказать и о периоде его разрядки).

Дополнительная информация. Перечисленные свойства позволяют использовать конденсаторы большой ёмкости в современных источниках возобновляемой энергии (солнечных батареях, ветровых генераторах и т. п.).

При его эксплуатации удаётся добиться более экономичного режима работы за счёт возможности аккумулирования избытков полученной от источников энергии.

Внешне суперконденсатор выглядит как обычный элемент с двумя электродами, используемый вместо аккумулятора.

Подобно АКБ, в своих внутренних полостях он также содержит электролит, который при взаимодействии с пластинами вырабатывает электроэнергию.

Особенности конструкции и производители

Электроды этого изделия изготавливаются из специального пористого материала, покрытого сверху тонким слоем активированного угля. В качестве электролитического состава используются смеси неорганического или органического происхождения. Основные его отличия от привычного конденсатора состоят в следующем:

  • Между обкладками в этом изделии размещается не обычный слой диэлектрика, а вдвое толще, что позволяет получить очень тонкий зазор. Такая конструкция обеспечивает возможность накапливать электроэнергию в больших объёмах (электрическая ёмкость в этом случае значительно возрастает);
  • Далее суперконденсатор, в отличие от других образцов, аккумулирует и расходует заряд достаточно быстро;
  • Благодаря использованию двойного слоя диэлектрика повышается общая площадь электродов, а габариты при этом остаются прежними. Технические характеристики изделия при этом заметно улучшаются.

К особенностям этих конденсаторов, появившихся в 1962 году, также следует отнести энергетическую структуру их электродов, один из которых имеет электронную проводимость, а другой – так называемую «ионную». В результате этого в процессе их зарядки осуществляется разделение противоположных по знаку зарядов, приводящее к накапливанию на обкладках положительного и отрицательного потенциала (смотрите фото).

В 1971 году лицензию на производство этих уникальных изделий получила известная японская корпорация NEC, успешно освоившая к этому времени практически все электротехнические направления. Именно ей удалось продвинуть и окончательно утвердить на рынке электронных изделий уникальную технологию производства суперконденсаторов. С 2000-х годов она успешно освоена практически во всех экономически развитых странах мира.

Виды суперэлектролитов

Все известные образцы электролитических изделий этого класса подразделяются на следующие виды:

  • Двухслойные конденсаторные структуры (ДСК);
  • Гибридные электролитические элементы;
  • Псевдоконденсаторы.

Рассмотрим каждый из них чуть подробнее.

Двухслойные структуры имеют в своём составе два пористых электрода с проводящим углеродным покрытием, разделенных особым составом (электролитным сепаратором). Процесс аккумулирования энергии в этих образованиях осуществляется за счет разделения противоположных по знаку зарядов, сопровождающегося образованием на электродах значительных по амплитуде потенциалов.

На величину электрического заряда таких структур существенное влияние оказывает емкость двойного накопительного слоя, выполняющего функцию своеобразного поверхностного конденсатора. Между собой эти две накопительные системы соединяются в последовательную цепочку посредством объединяющего их электролита.

Дополнительная информация. В данном случае он играет роль проводника с ионным типом проводимости.

Гибридные электролиты можно отнести к категории переходных структур, занимающих промежуточное положение между аккумулятором и конденсатором. Выбор такого названия для этих изделий обусловлен тем, что электроды в них изготавливаются из материалов разного типа, вследствие чего характер накопления зарядов несколько различен.

Обычно функцию катода в них выполняет материал, обладающий так называемой «псевдо ёмкостью», а процесс аккумулирования заряда происходит вследствие протекания окислительно-восстановительных реакций. Такая «архитектура» электролитов этой группы позволяет увеличить суммарную емкость конденсатора, а также расширить диапазон допустимых напряжений.

В этих изделиях чаще всего применяются сложные сочетания материала электродов, представляющих собой комбинацию из особого типа проводящих полимеров (или смешанных оксидов). Ведутся исследования по другим перспективным материалам (композитам, в частности), получаемым методом осаждения оксидов металлов на углеродные основания или полимеры.

Псевдоконденсаторы по своим техническим показателям гораздо ближе к перезаряжаемым аккумуляторным батареям, имеющим два твёрдотельных электрода. В основе их действия лежит сочетание следующих двух механизмов:

  • Процессы заряда и разряда (аналогичные реакциям, происходящим в обычных аккумуляторах);
  • Взаимодействия электростатического характера, присущие структурам с двойным электрическим слоем.

Приставка «псевдо» означает, что емкость этих элементов определяется не столько характером электростатических процессов, сколько зависимостью от реакций, связанных с переносом электролитических зарядов.

Области применения

Наиболее часто изделия этого класса применяются в следующих механизмах, агрегатах и образцах оборудования:

  • В системах с источниками возобновляемой энергии, нуждающихся в аккумулировании накапливаемых потенциалов (солнечные батареи, ветряные генераторы и т. п.);
  • В современных транспортных средствах (электрокарах, например), а также в устройствах запуска двигателей автомобилей на водородном топливе;
  • За счёт высокой энергетической плотности и повышенной удельной емкости эти изделия широко применяются в электронной аппаратуре (в качестве источников кратковременного и мощного импульса);
  • Также они востребованы в системах бесперебойного питания, в которых в полной мере используется их основное преимущество – обеспечивать мгновенную передачу мощности.

Обратите внимание! Сюда же следует отнести развивающиеся отрасли, предполагающие использование систем непрерывного питания на экономичном топливе.

Кроме того, суперконденсаторы могут применяться в следующих устройствах:

  • В системах демпфирования энергетических нагрузок, а также в устройствах запуска электродвигателей;
  • В комплексах, функционирование которых связано с критическими нагрузками (оборудование портов, больничных учреждений, вышек мобильной связи, банковских центров и т. п.);
  • В источниках резервного электроснабжения оборудования ПК и систем сбора данных (микропроцессоров и ЗУ), а также в мобильных телефонах.

Достоинства и недостатки конденсаторных изделий

К числу достоинств изделий рассматриваемого класса следует отнести:

  • Низкую удельную стоимость (из расчета на единицу ёмкости);
  • Высокие показатели ёмкостной плотности и КПД циклов заряда-разряда (до 95% и выше);
  • Надёжность, долговечность и экологическая чистота;
  • Прекрасные показатели удельной мощности;
  • Достаточно широкий диапазон температур, при которых возможна их эксплуатация;
  • Наибольшая из всех возможных для изделий данной категории скорость заряда и разряда;
  • Допустимость полной потери ёмкости (практически до нуля).

Ещё одно немаловажное преимущество СК – их сравнительно малые размеры и вес (по отношению к другим типам электролитических изделий).

Среди присущих им «минусов» хотелось бы отметить следующие недостатки:

  • Относительно малая плотность накапливаемых энергий;
  • Низкий показатель вольтажа, приходящегося на единицу ёмкости элемента;
  • Высокий уровень неконтролируемого саморазряда.

Добавим к этому не до конца проработанную технологию производства изделий.

Перспективы применения

В ближайшем будущем предполагается практически повсеместное использование суперконденсаторов, которые будут внедряться в большинство энергоёмких производств (включая медицинскую отрасль, аэрокосмическую промышленность и военную технику).

Одновременно с их внедрением всё более повышается удельная емкость этих изделий, что в перспективе позволит полностью заменить батареи конденсаторами. Также намечается процесс интегрирования суперконденсаторов в различные структуры современного электронного производства, включая изготовление управляющих и регулирующих элементов.

В заключение отметим, что конденсаторные изделия этого класса позволяют внедрить в жизнь экологически чистые способы экономии энергии, намного более перспективные, чем все известные до сих пор. В ближайшее время предполагается дальнейшее расширение сфер применения этих технологий, которые могут захватить всю автотранспортную отрасль, а также устройства связи и мобильную технику.

Видео

Ионисторы все чаще попадают в число основных элементов автомобильных электронных систем. Суперконденсатор для автомобиля решает задачу запуска двигателя, за счет чего сокращается нагрузка на аккумулятор. Кроме этого, за счет оптимизации монтажных схем уменьшается масса транспортного средства.
Широкое применение ионисторы для автомобиля нашли в изготовлении гибридных авто. У них работа генератора зависит от двигателя внутреннего сгорания, и машина приводится в движение с помощью электромоторов. Ионистор для автомобиля в такой схеме является источником быстро получаемой энергии при начале движения и ускорении. В процессе торможения происходит подзарядка накопителя.
Сейчас суперконденсатор вместо аккумулятора используется лишь частично. Впрочем, в ближайшем будущем полная замена наверняка станет реальной, потому что ученые активно занимаются разработкой таких технологий.

Когда нужен ионистор для запуска двигателя?
Суперконденсатор для авто требуется в случаях, когда есть риск того, что штатная аккумуляторная батарея не справится с задачей запуска двигателя внутреннего сгорания. Например, ионистор для автомобиля помогает в следующих ситуациях:
- аккумулятор хронически недополучает заряд в условиях частых поездок на короткие расстояния;
- мощности АКБ бывает недостаточно для запуска двигателя. Чаще всего такая проблема встает в зимнее время;
- необходимо снизить пиковые нагрузки на аккумулятор для продления его ресурса.
Даже когда батарея полностью вышла из строя, некоторые используют ионистор вместо аккумулятора. Он решает задачу запуска двигателя, а в дальнейшем бортовая сеть питается в основном от генератора. Впрочем, суперконденсатор вместо аккумулятора рекомендуется применять только в аварийном режиме, пока не появится возможность установить новую АКБ.
В штатной ситуации ионистор для запуска двигателя используется в следующем формате. Он подключается параллельно аккумуляторной батарее и в момент пуска принимает на себя основную нагрузку. Заторможенный стартер может потреблять очень большой ток (сотни ампер). Выработкой именно этого начального пускового тока для неподвижного стартера и коленвала будет заниматься для автомобиля. Когда основная нагрузка будет обеспечена, ионистор вместе с батареей произведут запуск мотора в более спокойном режиме.
Ионисторы для автомобиля не только продлевают ресурс аккумуляторов, но и положительно сказываются на работе бортовой электроники. При использовании суперконденсаторов для авто снижается провал напряжения в момент запуска, поэтому все электронные компоненты работают в более стабильном режиме. По этой же причине улучшается работа системы зажигания.
При движении связка из аккумулятора и суперконденсатора для автомобиля будет сглаживать возникающие в бортовой сети перепады напряжения. Они возникают из-за того, как ведет себя различное электрооборудование при разной нагрузке и оборотах двигателя. Наличие ионистора в цепи минимизирует негативное влияние таких скачков. Подробнее узнать о возможности использования ионистора вместо аккумулятора, а также параллельно с ним вы можете у наших консультантов.

Суперконденсаторы можно назвать ярчайшей разработкой последних лет. В сравнении с конденсаторами обычными они, при тех же габаритах, отличаются на три порядка большей емкостью. За это конденсаторы и получили свою приставку – «супер». За малый промежуток времени они могут отдавать огромное количество энергии.

Выпускаются они различных размеров и форм: от совсем маленьких, крепятся которые на поверхности приборов, не больше монетки по размерам, до очень крупных цилиндрических и призматических. Основным их назначением является дублирование источника основного (батареи) в случае падения напряжения.

Энергоемкие современные электронные и электрические системы к источникам питания выдвигают высокие требования. Появившееся оборудование (от цифровых камер до электронных портативных устройств и электрических трансмиссий транспортных средств) нуждается в аккумулировании и подаче необходимой энергии.

Решается эта задача современными разработчиками двумя путями:

  • Использованием аккумулятора, способного обеспечивать высокий импульс тока
  • Присоединением параллельно батарее в качестве страховки суперконденсаторов, т.е. «гибридное» решение.

В последнем случае суперконденсатор выполняет функцию источника питания при падении напряжения на аккумуляторе. Обусловлено это тем, что батареи обладают высокой плотностью энергии и малой плотностью мощности, в то время как суперконденсаторы, наоборот, характеризуются малой плотностью энергии, но высокой плотностью мощности, т.е. они обеспечивают ток разрядки на нагрузку. Включив суперконденсатор параллельно батарее, можно ее использовать более эффективно, следовательно, продлить срок службы.

Где используют суперконденсаторы

Видео: Тест суперконденсатора 116,6F 15V (6* 700F 2,5В), вместо стартерного аккумулятора в автомобиле

В автомобильных электронных системах их используют для запуска моторов , тем самым сокращая нагрузку на аккумулятор. Также они позволяют уменьшить массу, сократив монтажные схемы. Широкое применение они находят в гибридных авто, где генератором управляет ДВС, а электрический мотор (или моторы) приводят автомобиль в движение, т.е. суперконденсатор (энергетический кэш) используется в качестве источника тока при ускорении и начале движения, а во время торможения происходит его «подзарядка». Перспективно применение их не только в легковом, но и в городском транспорте, поскольку новый вид конденсаторов позволяет на 50% сократить потребление топлива и на 90% сократить выброс вредных газов в окружающее пространство.

Заменить полностью батарею суперконденсаторы пока не могу, но это только вопрос времени. Использовать суперконденсатор вместо аккумулятора – вовсе не фантастика. Если ученые — нанотехнологи из университета QUT идут по правильному пути, то в скором будущее это станет реальностью. Выступать в качестве аккумуляторов смогут панели кузова, внутри которых стоят суперконденсаторы последнего поколения. Сотрудникам этого университета удалось объединить в новом устройстве преимущества батарей литий-ионных и суперконденсаторов. Состоит новый тонкий, легкий и мощный суперконденсатор из карбоновых электродов, находящегося между ними электролита. Новинку, как утверждают ученые, устанавливать можно в любом месте кузова.

Улучшить же благодаря большому крутящему моменту (пусковому) стартовые характеристики при низких температурах и расширить возможности системы питания, им под силу уже сейчас. Целесообразность их использования в системе питания объясняется тем, что время их зарядки/разрядки равно 5-60 секунд. Помимо этого использовать их можно системе распределительной некоторых приборов машины: соленоидов, систем регулировки дверных замков и положения оконных стекол.

Суперконденсатор своими руками

Можно изготовить суперконденсатор своими руками. Поскольку конструкция его состоит из электролита и электродов, нужно определиться с материалом для них. Для электродов вполне подойдет медь, нержавейка или латунь. Можно взять, к примеру, пятикопеечные старые монеты. Нужен будет еще угольный порошок (в аптеке можно купить активированный уголь и измельчить его). В качестве электролита «сгодится» обычная вода, в которой растворить нужно поваренную соль (100:25). Раствор смешивается с угольным порошком, чтобы получилась консистенция замазки. Теперь ее слоем в несколько миллиметров необходимо нанести на оба электрода.

Осталось подобрать прокладку, разделяющую электроды, сквозь поры которой свободно будет проходить электролит, но задерживаться будет угольный порошок. Подойдет для этих целей стеклоткань или поролон.

Электроды – 1,5; обмазка угольно-электролитная – 2,4; прокладка – 3.

В качестве кожуха использовать можно пластмассовую коробочку, просверлив в ней предварительно отверстия для проводов, припаянных к электродам. Подсоединив провода к батарейке, ожидаем, пока зарядится конструкция «ионикс», названная так потому, что на электродах образоваться должна разная концентрация ионов. Проверить заряд проще с помощью вольтметра.

Есть и другие способы. Например, используя оловянную бумагу (станиолевую фольгу – обертку от шоколадки), куски жести и парафинированную бумагу, изготовить которую можно самостоятельно, нарезав и погрузив на пару минут в расплавленный, но не кипящий, парафин полоски папиросной бумаги. Ширина полосок должна быть пятьдесят миллиметров, а длина от двухсот до трехсот миллиметров. Вынув полоски из парафина, необходимо соскоблить тупой стороной ножа парафин.

Пропитанную парафином бумагу складывают в виде гармошки (как на рисунке). С обеих стороны в промежутки вкладываются листы станиолевые, которые соответствуют размеру 45х30 миллиметров. Подготовив, таким образом, заготовку, ее складывают, затем, проглаживают теплым утюгом. Оставшиеся станиолевые концы снаружи соединяют между собой. Можно использовать для этого картонные пластинки и латунные с жестяными обоймами, к которым позже припаиваются проводники для того, чтобы при монтаже можно было припаять конденсатор.

Емкость конденсатора зависит от количества станиолевых листочков. Она равна, например, тысяче пикофарад при использовании десяти таких листков, и двум тысячам, если их количество увеличить вдвое. Такая технология пригодна для изготовления конденсаторов емкостью до пяти тысяч пикофарад.

Если же необходима большая емкость, то необходимо иметь старый микрофарадный бумажный конденсатор, представляет собой который, рулон из ленты, состоящей из полос парафинированной бумаги, между которыми проложена полоса фольги станиолевой.

Для определения длины полос, пользуются формулой:

l = 0,014 С/а, где емкость необходимого конденсатора в пФ — С; ширина полос в см – а: длина в см – 1.

Отмотав от старого конденсатора полоски нужной длины, обрезают со всех сторон на 10 мм фольгу, чтобы между собой не дать соединиться обкладкам конденсатора.

Вновь ленту нужно свернуть, но сначала припаяв многожильные провода к каждой полоске фольги. Сверху конструкцию обклеивают плотной бумагой, а на края бумаги, которые выступают, заделывают два монтажных провода (жестких), к которым припаиваются с внутренней стороны гильзы бумажной выводы от конденсатора (см. рисунок). Последний шаг – заливка конструкции парафином.

Преимущества карбоновых суперконденсаторов

Поскольку шествие электротранспорта по планете сегодня нельзя не замечать, ученые работают над вопросом, связанным с его быстрейшей зарядкой. Идей возникает множество, но претворяются в жизнь единицы. В Китае, например, в городе Нинбо запущен необычный маршрут городского транспорта. Автобус, курсирующий по нему, работает от электромотора, но на зарядку ему требуется всего десять секунд. На ней он преодолевает пять километров и вновь, во время высадки/посадки пассажиров, успевает подзарядиться.

Возможным стало это благодаря использованию нового типа конденсаторов – карбоновых.

Карбоновые конденсаторы выдерживают около миллиона циклов перезарядки, отлично работают в диапазоне температур от минус сорока до плюс шестидесяти пяти градусов. До 80% энергии они возвращают при рекуперации.

Они открыли новую эру в управлении питанием, сократив до наносекунд время разрядки и зарядки, снизив вес автомобиля. К этим достоинствам можно добавить невысокую стоимость, поскольку в изготовлении не применяются редкоземельные металлы и экологичность.

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности - гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой - электролит, а изоляцией между обкладками - окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии - с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В. Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае - емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

где C - емкость, выраженная в фарадах, U - напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе - их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

Принес родственник-дальнобойщик видеорегистратор, который я заказывал ему пару лет назад. Видеорегистратор не включался, и я решил его попробовать починить. Убил на это около 10 часов, но результат оправдал ожидания, что побудило меня написать обзор, к тому же рукоблудие на муське нынче в почёте. В обзоре будут две кривые руки, дикий колхозинг, много скотч-тюнинга, волшебного дыма и прочих эпик-фейлов. Если вы перфекционист или просто эстет, то вам лучше, во избежание душевной травмы, пройти мимо, а остальных прошу посмотреть, что из этого получилось (осторожно, трафик - много фото).

Итак, вручил мне родственник нерабочий видеорегистратор, сказав, что расшатан разъем. Регистратор не плохой, по-моему на NTK96650 + AR0330, поэтому есть смысл его починить. После осмотра увидел, что одна прижимная лапка mini-USB опущена вниз и не дает штекеру вставиться до конца в разъем. Я разобрал регистратор, выпаял разъем (который выглядел довольно потрёпано), лапку выправил, впаял обратно. При подключении штекера питания загорелся индикатор charge, регистратор включился, но через 5 секунд экран начал тускнеть, мерцать, и регистратор выключился. Выдернул, воткнул снова - то же самое. В радиотехнике, схемотехнике и электронике я не силен от слова совсем, но мысль о том, что проблема с питанием, была верной. Решил впаять провода напрямую к контактам разъема miniUSB и подать на них питание (в обход разъема), но все осталось по-прежнему. Выпаял аккумулятор формата 032035 (емкость таких аккумуляторов обычно 150-160мАч) и проверил его на iMax B6. Зарядил его током 0.2А, поставил разряд током 0.3А и аккумулятор выдал 20мАч, на токе 0.1А он выдал чуть больше. Я его отпаял и сразу выкинул. Подал 4,2В на вход с аккумулятора, включил регистратор по кнопке и - эврика! Он заработал! Потребление тока 0.5-0.6А! На таком токе аккумулятор давал дичайшую просадку и работал буквально секунды. Видимо, частые поездки на север убили аккумулятор и у него сильно выросло внутреннее сопротивление.

Стал думать дальше. Очень странным мне показалось то, что регистратор не хотел работать при подаче питания на miniUSB. Ток был 0.04А, который, скорее всего, шел на заряд аккумулятора. Видимо, эти цепи как-то развязаны (диодом или понижающим до 4,2В конвертером с ограничением по выходному току?), и питание бралось с платы защиты аккумулятора. Но как он тогда раньше работал, когда питался от аккумулятора при токе заряда 0.04А и токе разряда 0,6А? Может что-то в нем погорело, но моих знаний не хватит найти причину. Значит будем устранять последствия. Выявились две проблемы:
1. Если подавать питание на вход с платы защиты, то регистратор придется каждый раз включать по кнопке. Значит надо совместить вход miniUSB и вход с платы защиты.
2. Если отказаться от источника резервного питания, то при отключении питания регистратор не сможет корректно завершить работу и записать файл на карту памяти. Значит обязательно надо резервный источник питания.

Первую проблему я решил, соединив через диод и резистор 47Ом плюсовые контакты miniUSB и входа с платы защиты. Диод взял обычный 1N4007, при входе 5,2В на выходе с платы защиты 4,2В, на miniUSB входе через резистор тоже 4,2В. Резистор одел в кембрик, чтобы он не коротнул на плату.








Теперь регистратор стал сам включаться при подаче питания.

Приступим ко второй проблеме. Ставить такой же аккумулятор - ждать месяц, да и не надежно - неизвестно из какого навоза и в каком подвале лепил его дядя Ляо, да и на жаре, на холоде, от токов 600мА (4C) он быстро придет в негодность. Аккумулятор большей емкости не решит всех проблем… Что же делать??? И тут я вспомнил про два суперконденсатора MaxFarad на 2.5V 90F, которые валялись у меня мертвым грузом уже 3 года.


Как обращаться с суперконденсаторами я не знал. Выставил на блоке питания 5В и решил зарядить их, в начале зарядки ток был 12А:))) Я, конечно, знал, что у них большое внутреннее сопротивление, но такого тока я все равно не ожидал. Как же их заряжать? Была у меня плата защиты от подобного мелкого аккумулятора на одной микросхеме, попробовал зарядить аккумуляторы через нее - она уходила в защиту. Видимо, она не ограничавает тока заряда, а только не дает разрядить аккумулятор ниже определенного значения. Полез в мусорку, отпаял плату защиты от аккумулятора с регистратора, эта плата с двумя микросхемами, одна - ноунейм микросхема защиты G3JX, вторая - силовой ключ 8205А (20В 5А), который, как я понял, и отвечает за регулировку тока заряда. С платой защиты кондеры чувствовали себя комфортно, ток заряда не превышал 3А при напряжении на кондерах около 0В. Этот ток длится не долго, поэтому нагреться ничего не успевало. Замерил емкость конденсаторов в диапазоне 4,2В - 3,0В на iMax B6 - она не далеко ушла от этого дохлого аккумулятора, около 30мАч, но просадки по напряжению не было и регистратор работал от кондеров 30 секунд (ток 0,6А). Была идея использовать повышайку до 5В, чтобы снять с кондеров раза в 3 больше, но, поразмыслив, понял, что это лишнее - регистратор выключается через 15 секунд после отключения питания, так что запас по емкости двукратный.

Дальше нарисовалась еще одна проблема. Надо сделать разъем для подключения питания. Я не стал использовать для этого имеющийся miniUSB, т.к., во-первых, это другая цепь питания, во-вторых, вы дальше сами поймёте. Хотел поставить стандартный 5.5мм, но он громоздкий и в корпус его не впихнуть. Решил поставить microUSB. Была у меня в заначке плата с разъемом microUSB и контактами 2,54мм, которую я покупал для ардуинства. Высверлил в боковой стенке регистратора сверлом на 5мм отверстие для разъема




Припаял контакты


И залил все черными соплями (термоклеем)






Да, отверстие великовато, ну да ладно, что сделано - то сделано:) Что удивило - разъем как тут и был: с одной стороны прижат платой, с другой крышкой, так что сидит плотно, при вдергивании и выдергивании нагрузки на клей не будет. А провода, припаянные снизу, не дают ему контактировать с элементами на плате.


Но тут я рано радовался - меня ждал первый эпик фейл. Попробовал закрыть корпус - динамик на лицевой крышке упирался в плату разъема microUSB и не давал закрыть корпус. Решение было очевидным - укоротить плату. Мне лень было лезть за дремелем и я варварски оторвал кусачками часть платы


Зачистил две дорожки


И подпаял к ним провода


Чтобы разъем не контактировал с элементами на плате, я наклеил на них скотч


Все встало хорошо, теперь динамику ничего не мешает


Вы внимательно посмотрели фотографию? Я вот был не внимателен и упустил важный эпик-фейл №2, который все-таки обнаружил до сборки - минусовой провод был в натяжку и он почти оторвался по пайке, залез на разъемы шины данных USB. К сожалению, у меня не было мелких супер гибких проводов в силиконовой изоляции (эти белые я содрал с нерабочих светодиодных полосок), пришлось использовать обычный брутальный провод. Заменил провод на более длинный.




Но регистратор никак не хотел закрываться. Пришлось укоротить кембрик, изолирующий плату защиты,


приклеить его скотчем к кембрику с резистором


и провести провод для конденсаторов в канавку.


Вот теперь все закрылось, хотя и с натягом, можно завинчивать




Проверка… Все работает исправно. Регистратор включается, при отключении питания выключается через 15 секунд.



Теперь еще один аргумент в пользу microUSB разъема. Я решил использовать магнитный разъем, купленный недавно для моего Xiaomi Redmi Note 3 Pro. Уж очень он мне понравился - не выступает, не надо задумываться об ориентации разъема при подключении к телефону, вставляется легко (разъем microUSB в телефоне не расшатывается), при сильном изгибе провод не выламывает разъем microUSB, а магнитный штекер отцепляется одной гранью (но продолжает заряжать!). Кабель, конечно, похуже оригинального: на оригинальном ток зарядки 1,75А, на этом 1,25А, но для меня это не критично - плюсы этого разъема перевешивают этот минус. Ссылка указана на похожий товар, мой продавец снял лот с продажи. Со слезами выдергиваем разъем из телефона съемником




И вставляем его в регистратор


Проверка. Все отлично!







Теперь еще одна проблема - как разместить аккумуляторы. Дело в том, что я не знаю, какое у родственника крепление и как их разместить, чтобы они не мешали креплению. Крепление у него еще и модифицированное, т.к. родное сделано для наклонного стекла, а у его фуры оно почти вертикальное. Может так?


Или так?




Наверное, лучше вот так. Креплению точно не помешают, а обзор (при расположении регистратора в его автомобиле) не закроют


Никто не заметил опасность этой фотографии? Я вот не заметил, поэтому одно неловкое движение и… Эпик фейл №3 - клубы дыма от горелой изоляции, провод отпал на месте пайки:


Так что суперконденсаторы детям не игрушка:) Проверил регистратор - все в порядке:




Вырезал из картона прокладку


и склеил кондеры друг с другом скотчем


А теперь берем что покрепче и…


Нет, не обмываем наше горе-поделку, а обезжириваем ее (спирт экономим, отметить пригодится), примериваем конденсаторы


И приклеиваем их скотчем


Вес увеличился почти в 2 раза (регистратор 57г, кондеры 45г):


Еще раз проверяем, все работает


Ну что, наш скотч-тюнинг добавил +10 к скорости записи, +5 к ускорению автомобиля и +15 к брутальности по изделия. Остается допить «обезжиривающую жидкость», обмотаться синей изолентой и в пьяном угаре написать обзор на муське


Но что-то подсказывает, что километры скотча тут лишние. Привинтим две планки по бокам, а уже к ним приклеим конденсаторы










Вот что получилось. Надеюсь, прочитав мой второй обзор, или кто-нибудь улыбнулся, или кто-нибудь вдохновился на рукоблудие. За сим откланяюсь, если будет кому интересно, то напишу еще о чем-нибудь из моих более-менее удачных поделок-недоделок, вроде переделки шурика на литий, ардуинства или замены ближнего света фар на светодиоды:)

P.S. Отдельное спасибо товарищами kirich, ksiman, yurok, dia, sav13 и некоторым другим, чьи подробные обзоры и комментарии не только дарят целый багаж знаний, но и заставляют руки чесаться:)

UPD 05.01.2017. Резистор в схеме лишний, пришлось замкнуть его накоротко, иначе регистратор сам иногда не включался. А так пока все ОК:)

Планирую купить +25 Добавить в избранное Обзор понравился +105 +200

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: