Вероятность неравенства от нескольких величин. Теорема Чебышева и ЗБЧ: примеры решений

На этой странице мы собрали примеры решения учебных задач по теории вероятностей, в которых применяются неравенство Маркова, неравенство Чебышева, теорема Чебышева и их следствия (закон больших чисел, ЗБЧ).

Краткая теория. Закон больших чисел

Неравенство Маркова дает вероятностную оценку того, что значение неотрицательной случайной величины превзойдет некоторую константу через известное математическое ожидание. Когда никаких других данных о распределении нет, неравенство дает некоторую информацию, хотя зачастую оценка груба или тривиальна.

Пусть $X$ - случайная величина, принимающая неотрицательные значения, $M(X)$ - ее конечное математическое ожидание, то для любых $a \gt 0$ выполняется

$$ P(X \ge a) \le \frac{M(X)}{a}. $$

Альтернативная форма записи (когда нужно оценить вероятность того, что СВ меньше некоторой константы):

$$ P(X \lt a) \gt 1-\frac{M(X)}{a}. $$

Когда известны не только математическое ожидание (первый момент), но и дисперсия (второй центральный момент) для случайной величины (и они конечны), можно применять следствие неравенства Маркова — неравенство Чебышева , которое дает оценку вида:

$$ P(|X-M(X)| \ge a) \le \frac{D(X)}{a^2}, \quad a \gt 0. $$

Также его можно записать в другой форме:

$$ P(|X-M(X)| \lt a) \gt 1- \frac{D(X)}{a^2}, \quad a \gt 0. $$

Неравенство Чёбышева показывает, что случайная величина принимает значения близкие к среднему (математическому ожиданию) и дает оценку вероятности больших отклонений. Положим $a=k\sigma$, где $\sigma$ - стандартное отклонение, тогда получим оценку вероятности того, что СВ отклонится по модулю от среднего больше чем на $k\sigma$:

$$ P(|X-M(X)| \ge k\sigma) \le \frac{1}{k^2}. $$

Для значения $k=2$ вероятность отклонения меньше 25%, для $k=3$ - уже 11,12%.

Для случайной величины $X$, распределенной по биномиальному закону с параметрами $n, p$, неравенство Чебышева принимает вид:

$$ P(|X-np| \lt a) \gt 1- \frac{npq}{a^2}. $$

Для частоты $k/n$ появления события в $n$ независимых испытаниях, в каждом из которых оно происходит с вероятностью $M(k/n)=p$ (дисперсия этой величины $D(k/n)=pq/n$) получаем:

$$ P\left(\left|\frac{k}{n}-p \right| \lt a\right) \gt 1- \frac{pq}{n a^2}. $$

Последнее неравенство также известно как неравенство из теоремы Бернулли. Из него также есть следствие, которое позволяет оценить отклонение числа $m$ появлений события в $n$ испытаниях от ожидаемого значения $np$:

$$ P\left(\left|m-np \right| \lt a\right) \gt 1- \frac{npq}{a^2}. $$

Приведем также теорему Чебышева , которая имеет большое практические значение.

Если дисперсии $n$ независимых случайных величин $X_1, X_2, ..., X_n$ ограничены одной и той же постоянной, то при неограниченном увеличении числа $n$ средняя арифметическая случайных величин сходится по вероятности к средней арифметической их математических ожиданий $a_1, a_2,..., a_n$, т.е.

$$ \lim_{n \to \infty} P\left(\left|\frac{X_1+X_2+...+X_n}{n}-\frac{a_1+a_2+...+a_n}{n} \right| \le \varepsilon \right)=1. $$

Следствие: Если независимые случайные величины $X_1, X_2, ..., X_n$ имеют одинаковые математические ожидания, равные $a$, а их дисперсии ограничены одной и то же постоянной $C$, то:

$$ P\left(\left|\frac{X_1+X_2+...+X_n}{n}-a \right| \le \varepsilon \right) \ge 1-\frac{C}{n \varepsilon^2}. $$

Это означает, что при большом числе случайных величин практически достоверно, что их средняя арифметическая (случайная величина) как угодно мало отличается от неслучайной величины $a$ (среднего значения).


Полезная страница? Сохрани или расскажи друзьям

Примеры решенных задач

Неравенство Маркова: примеры решений

Задача 1. Среднее количество вызовов, поступающих на коммутатор завода в течение часа, равно 300. Оценить вероятность того, что в течение следующего часа число вызовов на коммутатор: а) превысит 400; б) будет не более 500.

Задача 2. Количество потребляемой за сутки электроэнергии предприятием является случайной величиной с математическим ожиданием 6 мегаватт при среднем квадратическом отклонении 1,5 мегаватта. Оценить вероятность того, что в ближайшие сутки потребление электроэнергии окажется более 12 мегаватт.

Задача 3. Средняя температура воздуха в июле в данной местности 20?С. Оценить вероятность того, что в июле следующего года средняя температура воздуха будет:
а) не более $15^{0}С$;
б) более $20^{0}С$.

Неравенство Чебышева: примеры решений

Задача 4. В 1600 испытаниях Бернулли вероятность успеха в каждом испытании равна 0,3. С помощью неравенства Чебышева оценить вероятность того, что разница между числом успехов в этих испытаниях и средним числом успехов будет меньше 50.

Задача 5. . Генератор обеспечивает выходное напряжение, которое может отклоняться от номинального на значение, не превышающее 1 В, с вероятностью 0,95. Какие значения дисперсии выходного напряжения можно ожидать?

Задача 6. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется меньше двух.

Теорема Чебышева и ЗБЧ: примеры решений

Задача 7. Дана последовательность независимых случайных величин $X_1, X_2, ..., X_n, ...$ Случайная величина $X_k$ может принимать значения: $-n \alpha, 0, n \alpha$ ($\alpha \gt 0$) с вероятностями, соответственно равными: $1/2n^2, 1-1/n^2, 1/2n^2$. Применим ли к этой последовательности закон больших чисел?

Задача 8. Вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от средней арифметической их математических ожиданий не превышает 0,5, равна 0,8. Дисперсия каждой независимой случайной величины не превышает 7. Найти число таких случайных величин.

Задача 9. Дисперсия каждой из 2500 независимых СВ не превышает 5. Оценить вероятность того, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий не превысит 0,4.

Задача 10. Случайная величина $X_N$ принимает значения $exp(N \ln 0,5)$ и $exp(N \ln 1,2)$ с одинаковыми вероятностями. Можно ли к последовательности $X_N$ применить закон больших чисел?

Задача 1. В 400 испытаниях Бернулли вероятность успеха в каждом испытании равна 0,8. С помощью неравенства Чебышева оценить вероятность того, что разница между числом успехов в этих испытаниях и средним числом успехов будет меньше 20.

Решение. Число успехов в этих испытаниях распределено по закону Бернулли, поэтому среднее число успехов равно М=np=400Ч0,8=320, а дисперсия D=npq=400Ч0,8Ч0,2=64. Тогда в силу неравенства Чебышева имеем:

Вычислим эту же вероятность с помощью приближенной (интегральной) формулы Муавра-Лапласа:


Задача 2. В продукции цеха детали отличного качества составляют 50. Детали укладываются в коробки по 200 шт. в каждой. Какова вероятность того, что число деталей отличного качества в коробке отличается от 100 не более, чем на 5?

Решение. Пусть i случайное число деталей отличного качества в i-ой коробке, тогда при n=200, p=q=1/2 получим:

Задача 3. Используя условия задачи 1, указать, в каких границах с вероятностью 0,997 находится число деталей отличного качества в коробке.

Решение. По таблице функции Лапласа при условии находим u=3, и следовательно, Sn лежит в пределах, т.е. число деталей отличного качества в коробке с вероятностью 0,997 находится в пределах 100 21.

Задача 3. Используя условия задачи 1, определить, сколько деталей надо взять, чтобы с вероятностью, не меньшей 0,99, можно было утверждать, что число деталей отличного качества среди них не менее 100.

Решение. Обозначим. Используя нормальное приближение, получаем

Отсюда, а из таблицы 2 и свойств функции Лапласа получаем неравенство. Обозначив, с учетом p=q=1/2, приходим к квадратному неравенству х2 -2,3х-2000, решая которое, получаем n236.

Можно предложить и другой метод. А именно, пусть i - число деталей, которые пришлось перебрать, чтобы найти i-ую деталь отличного качества (включая ее саму). Случайные величины имеют геометрическое распределение с параметром p=1/2. Можем вычислить M=1/p=2, D=(1p)/p2=2. Используя ЦПТ, получаем неравенство

откуда следует n200+14,142,32=232,8 или, округляя, n234.

Результаты получаются близкие, но первый метод более точен и потому предпочтительней. Вторым методом лучше пользоваться, если нужно определить границы, в которых лежит неизвестное число деталей.

Задача 4. Доходы жителей города имеют математическое ожидание 10 тыс. руб. и среднее квадратическое отклонение 2 тыс. руб. (в месяц). Найти вероятность того, что средний доход 100 случайно выбранных жителей составит от 9,5 до 10,5 тыс. руб.

Решение. Переформулируем условие задачи для суммарного дохода: он должен составлять от 950 до 1050 тыс. руб. Используя ЦПТ, получаем:

Задача 5. Срок службы электрической лампы имеет показательное распределение с математическим ожиданием 1000 часов. Найти вероятность того, что средний срок службы для 100 ламп составит не менее 900 часов.

Решение. Примем для простоты 1000 часов за единицу времени. Вспомним числовые характеристики показательного распределения: М=, D=. Отсюда следует, что среднее квадратическое отклонение совпадает с математическим ожиданием (и оба они здесь равны единице). Переформулируя условие задачи для суммарного срока службы и используя ЦПТ, получаем.

Лекция 11. Неравенство Чебышева. Теорема Чебышева. Центральная предельная теорема.

Несмотря на то, что заранее нельзя предсказать, какое из возможных значений примет случайная величина в результате опыта, при некоторых условиях суммарное поведение достаточно большого числа случайных величин становится закономерным. Иными словами, при очень большом числе случайных явлений их средний результат практически перестает быть случайным и может быть предсказан с большой степенью определенности.

Для практики очень важно знание условий, при выполнении которых это может происходить. Эти условия указываются в теоремах, носящих общее название закона больших чисел , важнейшей из которых является теорема Чебышева. Для доказательства теоремы Чебышева используется неравенство Чебышева , которое мы сейчас рассмотрим.

Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа e, не меньше, чем , т.е.

Пример .

Номинальное значение диаметра втулки равно 5 мм, а дисперсия, из-за погрешностей изготовления, не превосходит 0,01. Оценить вероятность того, что размер втулки будет отличаться от номинала не более чем на 0,5 мм.

Решение:

По неравенству Чебышева

Неравенство Чебышева дает только верхнюю границу вероятности данного отклонения. Выше этой границы вероятность не может быть ни при каком законе распределения . Например, если мы захотим выяснить, какова вероятность того, что случайная величина X отклонится от своего математического ожидания не меньше, чем на 3 среднеквадратических отклонения, то неравенство Чебышева даст нам верхнюю границу этого значения 1/9 @ 0,111. В то же время, например для нормального распределения вероятность такого отклонения намного меньше - 0,0027 (правило трех сигм).

Теорема Чебышева .

Если - попарно независимые случайные величины, причем их дисперсии ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число e, вероятность выполнения неравенства

будет как угодно близка к единице при достаточно большом числе n. Иначе говоря

Таким образом, теорема Чебышева утверждает, что для достаточно большого числа независимых случайных величин, имеющих ограниченные дисперсии, почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.

Доказательство . Введем в рассмотрение новую случайную величину – среднее арифметическое случайных величин



Найдем математическое ожидание . Пользуясь свойствами математического ожидания, получим

Применяя к величиненеравенство Чебышева, имеем

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

Так как по условию дисперсии всех случайных величин ограничены постоянным числом С, то

Таким образом

Подставляя правую часть последнего неравенства в (1) (отчего оно может быть только усилено), получим

Отсюда, переходя к пределу при и учитывая, что вероятность не может превосходить единицы, получим доказательство:

В важном частном случае, когда случайные величины имеют одно и то же математическое ожидание (обозначим его a) формула, выражающая теорему Чебышева, принимает вид

Сущность теоремы Чебышева такова: хотя отдельные независимые случайные величины могут принимать значения, далекие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения, близкие к определенному

постоянному числу

или – в частном случае, к числу . Иными словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало. Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются .

Пусть производится процесс измерения некоторой величины. Будем рассматривать результаты каждого измерения как случайные величины . Если результат каждого измерения не зависит от результатов остальных (т.е. величины попарно независимы), а случайные величины имеют одинаковое математическое ожидание и их дисперсии ограничены, то, применяя теорему Чебышева, получим, что при достаточно большом n среднее арифметическое результатов измерений сколь угодно мало отличается от истинного значения измеряемой величины (математического ожидания a).

На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят о всей совокупности (генеральной совокупности) исследуемых объектов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: